精英家教網 > 高中數學 > 題目詳情

已知處取得極值。
(Ⅰ)證明:;
(Ⅱ)是否存在實數,使得對任意?若存在,求的所有值;若不存在,說明理由。

(Ⅰ)詳見解析;(Ⅱ)存在唯一的實數a=符合題意.

解析試題分析:(Ⅰ)由已知條件得f¢(x0)=0得到關于x0的關系式,再求出f(x0);(Ⅱ)將原不等式轉化為x2(lnx-a)+a≥0,考察關于x的函數g(x)=x2(lnx-a)+a的單調性,求出最小值g=a-e2a-1,再研究關于a的函數h(a)=a-e2a-1,當a取哪些值時h(a)≥0.
試題解析:(Ⅰ)f¢(x)=
依題意,lnx0+x0+1=0,則lnx0=-(x0+1).
f(x0)==-x0.
(Ⅱ)f(x)≥等價于x2(lnx-a)+a≥0.
設g(x)=x2(lnx-a)+a,則g¢(x)=x(2lnx-2a+1).
令g¢(x)=0,得x=
當x∈時,g¢(x)<0,g(x)單調遞減;
當x∈時,g¢(x)>0,g(x)單調遞增.
所以g(x)≥g=a-e2a-1
于是f(x)≥恒成立只需a-e2a-1≥0.   
設h(a)=a-e2a-1,則h=0,
且h¢(a)=1-e2a-1,h¢=0.
當a∈(0,)時,h¢(a)>0,h(a)單調遞增,h(a)<h=0;
當a∈(,+∞)時,h¢(a)<0,g(x)單調遞減,h(a)<h=0.
因此,a-e2a-1≤0,當且僅當a=時取等號.
綜上,存在唯一的實數a=,使得對任意x∈(0,+∞),f(x)≥
考點:導函數的應用

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數,其中
(1)若時,記存在使
成立,求實數的取值范圍;
(2)若上存在最大值和最小值,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分16分)如圖,某自來水公司要在公路兩側排水管,公路為東西方向,在路北側沿直線排,在路南側沿直線排,現要在矩形區(qū)域內沿直線將接通.已知,公路兩側排管費用為每米1萬元,穿過公路的部分的排管費用為每米2萬元,設所成的小于的角為

(Ⅰ)求矩形區(qū)域內的排管費用關于的函數關系式;
(Ⅱ)求排管的最小費用及相應的角

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知常數、都是實數,函數的導函數為,的解集為
(Ⅰ)若的極大值等于,求的極小值;
(Ⅱ)設不等式的解集為集合,當時,函數只有一個零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(I)若函數上是減函數,求實數的最小值;
(2)若,使)成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為常數),且在點處的切線平行于軸.
(Ⅰ)求實數的值;
(Ⅱ)求函數的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為自然對數的底數).
(Ⅰ)當時,求的單調區(qū)間;
(Ⅱ)若函數上無零點,求最小值;
(Ⅲ)若對任意給定的,在上總存在兩個不同的),使成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(I)若處取得極值,
①求的值;②存在,使得不等式成立,求的最小值;
(II)當時,若上是單調函數,求的取值范圍.(參考數據

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數圖像上點處的切線與直線平行(其中),     
(I)求函數的解析式;
(II)求函數上的最小值;
(III)對一切恒成立,求實數的取值范圍。

查看答案和解析>>

同步練習冊答案