在海岸A處,發(fā)現(xiàn)北偏東45°方向距A為-1海里的B處有一艘走私船,在A處北偏西75°的方向,距A為2海里的C處的緝私船奉命以10海里/小時(shí)的速度追截走私船.此時(shí)走私船正以10海里/小時(shí)的速度從B處向北偏東30°方向逃竄,問(wèn)緝私船沿著什么方向能最快追上走私船?并求出所需要的時(shí)間.(注:≈2.449)
緝私船沿北偏東60°方向,需14.7分鐘才能追上走私船.
解析試題分析:設(shè)緝私船追上走私船所需時(shí)間為t小時(shí),如圖所示,則有CD=10t海里,BD=10t海里.在△ABC中,
∵AB=(-1)海里,AC=2海里,∠BAC=45°+75°=120°,
根據(jù)余弦定理可得
BC=
=海里.
根據(jù)正弦定理可得
sin∠ABC===.
∴∠ABC=45°,易知CB方向與正北方向垂直.
從而∠CBD=90°+30°=120°.
在△BCD中,根據(jù)正弦定理可得:
sin∠BCD===,
∴∠BCD=30°,∠BDC=30°.∴BD=BC=海里.
則有10t=,t=≈0.245小時(shí)=14.7分鐘.
故緝私船沿北偏東60°方向,需14.7分鐘才能追上走私船.
考點(diǎn):本題考查了正余弦定理的實(shí)際運(yùn)用
點(diǎn)評(píng):有關(guān)斜三角形的實(shí)際問(wèn)題,其解題的一般步驟是:(1)準(zhǔn)確理解題意,分清已知與所求,尤其要理解應(yīng)用題中的有關(guān)名詞和術(shù)語(yǔ);(2)畫(huà)出示意圖,并將已知條件在圖形中標(biāo)出;(3)分析與所研究問(wèn)題有關(guān)的一個(gè)或幾個(gè)三角形,通過(guò)合理運(yùn)用正弦定理和余弦定理求解。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在△ABC中,a, b, c分別為內(nèi)角A, B, C的對(duì)邊,且.
(Ⅰ)求A的大;
(Ⅱ)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在△ABC中,a,b,c分別為角A,B,C所對(duì)的邊,a,b,c成等差數(shù)列,且a=2c。
(1)求cosA的值;(2)若△ABC面積為,求b的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在△ABC中,a+b=2,ab=2,且角C的度數(shù)為120°
(1)求△ABC的面積
(2)求邊c的長(zhǎng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在中,內(nèi)角A,B,C所對(duì)的分別是a, b,c。已知a=2.c=, A=.
(I)求sin C和b的值;
(II)求 (2A+)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)是三角形的內(nèi)角,且和是關(guān)于方程的兩個(gè)根.
(1)求的值;
(2)求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com