(本小題滿分12分)
已知點F( 1,0),與直線4x+3y + 1 =0相切,動圓M與及y軸都相切. (I )求點M的軌跡C的方程;(II)過點F任作直線l,交曲線C于A,B兩點,由點A,B分別向各引一條切線,切點 分別為P,Q,記.求證是定值.

(I ) ;(II) 當不與軸垂直時,直線的方程為,由,設
,
當與軸垂直時,也可得。

解析試題分析:(Ⅰ)⊙的半徑為,⊙的方程為,
軸于,則,即,則是過作直線的垂線的垂足),則點的軌跡是以為焦點,為準線的拋物線.
∴點的軌跡的方程為;                     …6分
(Ⅱ)當不與軸垂直時,直線的方程為,由
,設,則

當與軸垂直時,也可得,
綜上,有.                                           …12分
考點:軌跡方程的求法;拋物線的簡單性質;直線方程的點斜式;直線與拋物線的綜合應用。
點評:(1)在設直線方程的點斜式時,要注意討論斜率是否存在;(2)做第二問的關鍵是:把的值用兩根之和或兩根之積表述出,從而達到應用韋達定理的目的。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C1:,拋物線C2:,且C1、C2的公共弦AB過橢圓C1的右焦點.
(Ⅰ)當AB⊥軸時,求、的值,并判斷拋物線C2的焦點是否在直線AB上;
(Ⅱ)是否存在、的值,使拋物線C2的焦點恰在直線AB上?若存在,求出符合條件的、的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
設雙曲線的方程為、為其左、右兩個頂點,是雙曲線 上的任意一點,作,,垂足分別為、,交于點.
(1)求點的軌跡方程;
(2)設的離心率分別為、,當時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
雙曲線與雙曲線有共同的漸近線,且經過點,橢圓以雙曲線的焦點為焦點且橢圓上的點與焦點的最短距離為,求雙曲線和橢圓的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分15分)
已知點,是拋物線上相異兩點,且滿足
(Ⅰ)若的中垂線經過點,求直線的方程;
(Ⅱ)若的中垂線交軸于點,求的面積的最大值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)已知橢圓C1的離心率為,直線l: y-=x+2與.以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切.
(1)求橢圓C1的方程;
(ll)設橢圓C1的左焦點為F1,右焦點為F2,直線l2過點F價且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(III)過橢圓C1的左頂點A作直線m,與圓O相交于兩點R,S,若△ORS是鈍角三角形,     求直線m的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知中心在坐標原點O,焦點在軸上,長軸長是短軸長的2倍的橢圓經過點M(2,1)
(Ⅰ)求橢圓的方程;
(Ⅱ)直線平行于,且與橢圓交于A、B兩個不同點.
(ⅰ)若為鈍角,求直線軸上的截距m的取值范圍;
(ⅱ)求證直線MA、MBx軸圍成的三角形總是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知、為橢圓的焦點,且直線與橢圓相切.
(Ⅰ)求橢圓方程;
(Ⅱ)過的直線交橢圓于、兩點,求△的面積的最大值,并求此時直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題10分)雙曲線的離心率等于4,且與橢圓有相同的焦點,求此雙曲線方程.

查看答案和解析>>

同步練習冊答案