精英家教網(wǎng)如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,點P是圓外一點,PA切⊙O于點A,且PA=PB.
(1)求證:PB是⊙O的切線;
(2)已知PA=
3
,BC=1,求⊙O的半徑.
分析:(1)要證PB是⊙O的切線,只要連接OB,求證∠OBP=90°即可;
(2)連接OP,交AB于點D,求半徑時,可以證明△APO∽△DPA,還可證明△PAO∽△ABC,在Rt△OAP中利用勾股定理.
解答:證明:(1)連接OB,
∵OA=OB,
∴∠OAB=∠OBA,
∵PA=PB,
∴∠PAB=∠PBA,
∴∠OAB+∠PAB=∠OBA+∠PBA,
∴∠PAO=∠PBO.(2分)
又∵PA是⊙O的切線,
∴∠PAO=90°,
∴∠PBO=90°,
∴OB⊥PB.(4分)
又∵OB是⊙O半徑,
∴PB是⊙O的切線,(5分)

(2)解:連接OP,交AB于點D精英家教網(wǎng),
∵PA=PB,
∴點P在線段AB的垂直平分線上.
∵OA=OB,
∴點O在線段AB的垂直平分線上,
∴OP垂直平分線段AB,(7分)
∴∠PAO=∠PDA=90°.
又∵∠APO=∠DPA,
∴△APO∽△DPA,
AP
DP
=
PO
PA
,
∴AP2=PO•DP.
又∵OD=
1
2
BC=
1
2
,
∴PO(PO-OD)=AP2,
即:PO2-
1
2
PO=(
3
)2
,
解得PO=2,(9分)
在Rt△APO中,OA=
PO2-PA2
=1
,即⊙O的半徑為1.(10分)
點評:本題考查的是切線的判定,要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可.同時考查了相似三角形的判定和性質(zhì),及勾股定理的運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(A)(幾何證明選講選做題)如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點D,則BD的長為=
16
5
16
5
;
(B)(不等式選講選做題)關于x的不等式|x-1|+|x-2|≤a2+a+1的解集為空集,則實數(shù)a的取值范圍是
(-1,0)
(-1,0)
;
(C)(坐標系與參數(shù)方程選做題)已知極坐標的極點在直角坐標系的原點O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為
x=3cosθ
y=sinθ
(θ為參數(shù)),直線l的極坐標方程為ρcos(θ-
π
3
)=6
.點P在曲線C上,則點P到直線l的距離的最小值為
6-
3
6-
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,點A(p,o)(p>0),點R在y軸上運動,點T在x軸上,N為動點,且
RT
RA
=0,
RN
+
RT
=0

(I)設動點N的軌跡為曲線C,求曲線C的方程;
(II)設P,Q是曲線C上的兩個動點,M(x0,y0)是曲線C上一定點,若
PM
QM
=0
,試證明直線PQ經(jīng)過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學精品復習10:定比分點、平移、正余弦定理(解析版) 題型:解答題

如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,點P是圓外一點,PA切⊙O于點A,且PA=PB.
(1)求證:PB是⊙O的切線;
(2)已知PA=,BC=1,求⊙O的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省蘇州市紅心中學高三摸底數(shù)學試卷(解析版) 題型:解答題

如圖,⊙O是Rt△ABC的外接圓,∠ABC=90°,點P是圓外一點,PA切⊙O于點A,且PA=PB.
(1)求證:PB是⊙O的切線;
(2)已知PA=,BC=1,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案