已知直線:,(不同時(shí)為0),:,
(1)若且,求實(shí)數(shù)的值;
(2)當(dāng)且時(shí),求直線與之間的距離.
(1)2;(2)
解析試題分析:(1)因?yàn)槿?img src="http://thumb.zyjl.cn/pic5/tikupic/69/0/o9rgs.png" style="vertical-align:middle;" />時(shí).所以直線.又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3e/0/cx8bg.png" style="vertical-align:middle;" />,所以可得(舍去).所以.
(2)因?yàn)楫?dāng)時(shí),.又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3f/a/ohcu3.png" style="vertical-align:middle;" />所以可得,解得.所以兩條直線分別是;.所以兩平行線間的距離.本題主要是考查兩直線垂直于平行的位置關(guān)系.最好要記住通用的公式便于解題,否則要把直線化為斜截式可能會解題不完整.
試題解析:(1)當(dāng)時(shí),:,由知, 4分
解得; 6分
(2)當(dāng)時(shí),:,當(dāng)時(shí),有 8分
解得, 9分
此時(shí),的方程為:,
的方程為:即, 11分
則它們之間的距離為. 12分
考點(diǎn):1.直線平行的公式.2.直線垂直的通用公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)分別為橢圓的左、右焦點(diǎn),斜率為的直線經(jīng)過右焦點(diǎn),且與橢圓W相交于兩點(diǎn).
(1)求的周長;
(2)如果為直角三角形,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩直線l1:ax-by+4=0,l2:(a-1)x+y+b=0,分別求滿足下列條件的a、b的值.
(1) 直線l1過點(diǎn)(-3,-1),且l1⊥l2;
(2) 直線l1與l2平行,且坐標(biāo)原點(diǎn)到l1、l2的距離相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知直線的斜率為.
(Ⅰ)若直線過點(diǎn),求直線的方程;
(Ⅱ)若直線在軸、軸上的截距之和為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
光線從點(diǎn)射出,到軸上的點(diǎn)后,被軸反射,這時(shí)反射光線恰好過點(diǎn),求所在直線的方程及點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn),的坐標(biāo)分別是,.直線,相交于點(diǎn),且它們的斜率之積為.
(1)求點(diǎn)的軌跡的方程;
(2)若過點(diǎn)的兩直線和與軌跡都只有一個(gè)交點(diǎn),且,求的值;
(3)在軸上是否存在兩個(gè)定點(diǎn),,使得點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離的比恒為,若存在,求出定點(diǎn),;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com