【題目】已知命題p:(x+1)(x﹣5)≤0,命題q:1﹣m≤x<1+m(m>0).
(1)若p是q的充分條件,求實(shí)數(shù)m的取值范圍;
(2)若m=5,“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)x的取值范圍.
【答案】
(1)解:由命題p:(x+1)(x﹣5)≤0,化為﹣1≤x≤5.
命題q:1﹣m≤x<1+m(m>0).
∵p是q的充分條件,
∴[﹣1,5][1﹣m,1+m),
∴ ,解得m>4.
則實(shí)數(shù)m的取值范圍為(4,+∞)
(2)解:∵m=5,∴命題q:﹣4≤x<6.
∵“p∨q”為真命題,“p∧q”為假命題,
∴命題p,q為一真一假.
當(dāng)p真q假時(shí),可得 ,解得x∈.
當(dāng)q真p假時(shí),可得 ,解得﹣4≤x<﹣1或5<x<6.
因此x的取值范圍是[﹣4,﹣1)∪(5,6)
【解析】(1)由于p是q的充分條件,可得[﹣1,5][1﹣m,1+m),解出即可;(2)由于“p∨q”為真命題,“p∧q”為假命題,可得命題p,q為一真一假.即可即可.
【考點(diǎn)精析】掌握復(fù)合命題的真假是解答本題的根本,需要知道“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知曲線,曲線, 是平面上一點(diǎn),若存在過點(diǎn)的直線與都有公共點(diǎn),則稱為“型點(diǎn)”.
(1)證明: 的左焦點(diǎn)是“型點(diǎn)”;
(2)設(shè)直線與有公共點(diǎn),求證: ,進(jìn)而證明原點(diǎn)不是“型點(diǎn)”;
(3)求證: 內(nèi)的點(diǎn)都不是“型點(diǎn)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)袋中裝有四個(gè)形狀大小完全相同的球,球的編號分別為1,2,3,4.
(Ⅰ)從袋中隨機(jī)抽取兩個(gè)球,求取出的球的編號之和不大于4的概率;
(Ⅱ)先從袋中隨機(jī)取一個(gè)球,該球的編號為m,將球放回袋中,然后再從袋中隨機(jī)取一個(gè)球,該球的編號為n,求n<m+2的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)ω>0,函數(shù)y=sin(ωx+ )+2的圖象向右平移 個(gè)單位后與原圖象重合,則ω的最小值是( )
A.
B.
C.
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是奇函數(shù)。
(1)求實(shí)數(shù)m的值;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并給出證明;
(3)當(dāng)x∈(n,a-2)時(shí),函數(shù)f(x)的值域是(1,+∞),求實(shí)數(shù)a與n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+c,(a,b,c∈R)滿足,對任意實(shí)數(shù)x,都有f(x)≥x,且當(dāng)x∈(1,3)時(shí),有f(x)≤ (x+2)2成立.
(1)證明:f(2)=2;
(2)若f(﹣2)=0,求f(x)的表達(dá)式;
(3)在(2)的條件下,設(shè)g(x)=f(x)﹣ x,x∈[0,+∞),若g(x)圖象上的點(diǎn)都位于直線y= 的上方,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
(I)當(dāng)時(shí),求函數(shù)的最小值;
(Ⅱ)若函數(shù)在上有零點(diǎn),求實(shí)數(shù)的范圍;
(III)證明不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(0,﹣2),橢圓E: =1(a>b>0)的離心率為 ,F(xiàn)是橢圓的焦點(diǎn),直線AF的斜率為 ,O為坐標(biāo)原點(diǎn).
(Ⅰ)求E的方程;
(Ⅱ)設(shè)過點(diǎn)A的直線l與E相交于P,Q兩點(diǎn),當(dāng)△OPQ的面積最大時(shí),求l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com