【題目】已知拋物線, 是焦點,直線是經(jīng)過點的任意直線.
(Ⅰ)若直線與拋物線交于、兩點,且(是坐標原點, 是垂足),求動點的軌跡方程;
(Ⅱ)若、兩點在拋物線上,且滿足,求證:直線必過定點,并求出定點的坐標.
【答案】所求動點M的軌跡方程是 ().
直線CD的方程可化為. 直線CD恒過定點,且定點坐標為(2,0).
【解析】(本題滿分12分)本題共有2個小題,第1小題滿分5分,第2小題滿分7分.
解 (1) 設(shè)動點M的坐標為. …………………1分
∵拋物線的焦點是,直線l恒過點F,且與拋物線交于兩點A、B,
又,
∴. …………………3分
∴,化簡,得. …………………5分
又當M與原點重合時,直線l與x軸重合,故.
∴所求動點M的軌跡方程是 ().
(2) 設(shè)點C、D的坐標為、. …………………………6分
∵C、D在拋物線上,
∴, ,即, .
又,
∴. ………8分
∵點C、D的坐標為、,
∴直線CD的一個法向量是,可得直線CD的方程為:
,化簡,得
,進一步用,有
.
又拋物線上任兩點的縱坐標都不相等,即.
∴直線CD的方程可化為. ………………………10分
∴直線CD恒過定點,且定點坐標為(2,0). ………………………12分
科目:高中數(shù)學 來源: 題型:
【題目】已知(),,且直線與曲線相切.
(1)求的值;
(2)若對內(nèi)的一切實數(shù),不等式恒成立,求實數(shù)的取值范圍;
(3)求證: ().
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),曲線在點處切線與直線垂直(其中為自然對數(shù)的底數(shù)).
(1)求的解析式及單調(diào)減區(qū)間;
(2)是否存在常數(shù),使得對于定義域的任意恒成立,若存在,求出 的值;若
不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線, 是焦點,直線是經(jīng)過點的任意直線.
(Ⅰ)若直線與拋物線交于、兩點,且(是坐標原點, 是垂足),求動點的軌跡方程;
(Ⅱ)若、兩點在拋物線上,且滿足,求證:直線必過定點,并求出定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)().
(1)若函數(shù)有零點,求實數(shù)的取值范圍;
(2)若對任意的,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ()的兩個焦點為, ,離心率為,點, 在橢圓上, 在線段上,且的周長等于.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過圓: 上任意一點作橢圓的兩條切線和與圓交于點, ,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是橢圓上任一點,點到直線的距離為,到點的距離為,且.直線與橢圓交于不同兩點(都在軸上方),且.
(1)求橢圓的方程;
(2)當為橢圓與軸正半軸的交點時,求直線方程;
(3)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】A,B兩城相距100 km,在兩地之間距A城x km處的D地建一核電站給A,B兩城供電.為保證城市安全,核電站與城市距離不得少于10 km.已知供電費用與供電距離的平方和供電量之積成正比,比例系數(shù)λ=0.25.若A城供電量為20億度/月,B城為10億度/月.
(1)求x的取值范圍;
(2)把月供電總費用y表示成x的函數(shù);
(3)核電站建在距A城多遠,才能使供電費用最。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),其中,若是的三條邊長,則下列結(jié)論中正確的是( )
①存在,使、、不能構(gòu)成一個三角形的三條邊
②對一切,都有
③若為鈍角三角形,則存在,使
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com