精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)
對于定義在區(qū)間D上的函數,若存在閉區(qū)間和常數,使得對任意,都有,
且對任意D,當時,恒成立,則稱函數為區(qū)間D上的“平底型”函數.
(Ⅰ)判斷函數是否為R上的“平底型”函數?并說明理由;
解:(Ⅰ)對于函數,當時,
時,恒成立,故是“平底型”函數.…2分
對于函數,當時,;
時,,所以不存在閉區(qū)間,使當時,恒成立.
不是“平底型”函數.                                                …4分
(Ⅱ)若對一切R恒成立,則
因為,所以.又,則.        
因為,則,解得
故實數的范圍是.    …7分
(Ⅲ)因為函數是區(qū)間上的“平底型”函數,則
存在區(qū)間和常數,使得恒成立.
所以恒成立,即.解得.…9分
時,
時,,當時,恒成立.
此時,是區(qū)間上的“平底型”函數. 
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:填空題

對于連續(xù)函數,函數在閉區(qū)間上的最大值稱為
在閉區(qū)間上的“絕對差”,記為  .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題


計算:
(1)  
(2)                   

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

是定義在上的以3為周期的偶函數,且,則方程在區(qū)
內解的個數的最小值是:
A.5B.4C.3 D.2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如果函數上單調遞減,則實數滿足的條件是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

曲線方程,其圖像與直線有兩個不同的交點,則a的取值范圍_ 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

本小題10分).    
計算

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數的最小值為.
(1)求
(2)若及此時的最大值.(12分)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

上的奇函數,且,當時,,則="(   " )
A.—0.5B.—1.5C.0.5D.1.5

查看答案和解析>>

同步練習冊答案