【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(為參數(shù)),在以O為極點,x軸的非負半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為
(1)求曲線C的直角坐標(biāo)方程
(2)設(shè)直線l與x軸交于點P,且與曲線C相交與A、B兩點,若是與的等比中項,求實數(shù)m的值
【答案】(1);(2).
【解析】
(1)將用三角函數(shù)倍角公式展開化簡整理,用極坐標(biāo)與直角坐標(biāo)轉(zhuǎn)換公式代入即可得到答案.
(2)轉(zhuǎn)化直線的參數(shù)方程,利用直線參數(shù)方程的幾何意義結(jié)合已知條件即可得到答案.
(1)因為,則
所以,即,
將代入上式即得.
所以直線C的直角坐標(biāo)方程.
(2)依題得點坐標(biāo)為,
令則直線l的參數(shù)方程化為(為參數(shù))代入得:
即.
依題得,所以.
設(shè)A、B兩點所對應(yīng)的參數(shù)分別為
由根與系數(shù)的關(guān)系可得,.
因為是與的等比中項,
所以即,
所以
當(dāng)時顯然不符合題意,故
所以即,
所以
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形中,,,過點作的垂線,交的延長線于點,.連結(jié),交于點,如圖1,將沿折起,使得點到達點的位置,如圖2.
(1)證明:平面平面;
(2)若為的中點,為的中點,且平面平面,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】奇函數(shù)f(x)在R上存在導(dǎo)數(shù),當(dāng)x<0時,f(x),則使得(x2﹣1)f(x)<0成立的x的取值范圍為( )
A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)
C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,在等腰梯形中,,,是的中點.將沿折起,使二面角為,連接,得到四棱錐(如圖乙),為的中點,是棱上一點.
(1)求證:當(dāng)為的中點時,平面平面;
(2)是否存在一點,使平面與平面所成的銳二面角為,若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點,軸的非負半軸為極軸建立極坐標(biāo)系.
(1)求直線和曲線的極坐標(biāo)方程;
(2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(I)若函數(shù)的圖象在處的切線斜率為1,求實數(shù)的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)在[1,2]上是減函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市旅游管理部門為提升該市26個旅游景點的服務(wù)質(zhì)量,對該市26個旅游景點的交通、安全、環(huán)保、衛(wèi)生、管理五項指標(biāo)進行評分.每項評分最低分0分,最高分100分.每個景點總分為這五項得分之和,根據(jù)考核評分結(jié)果,繪制交通得分與安全得分散點圖、交通得分與景點總分散點圖如圖
請根據(jù)圖中所提供的信息,完成下列問題:
(1)若從交通得分排名前5名的景點中任取1個,求其安全得分大于90分的概率;
(2)若從景點總分排名前6名的景點中任取3個,記安全得分不大于90分的景點個數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學(xué)期望;
(3)記該市26個景點的交通平均得分為,安全平均得分為,寫出和的大小關(guān)系?(只寫出結(jié)果)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),直線l經(jīng)過定點P(2,3),傾斜角為.
(Ⅰ)寫出直線l的參數(shù)方程和圓C的標(biāo)準方程;
(Ⅱ)設(shè)直線l與圓C相交于A,B兩點,求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時,討論函數(shù)的單調(diào)性;
(2)當(dāng)時,令,是否存在區(qū)間,使得函數(shù)在區(qū)間上的值域為,若存在,求實數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com