已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的圖象在點(diǎn)處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)性;
(Ⅰ)(Ⅱ),為增函數(shù),為減函數(shù)
本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
(1)利用導(dǎo)數(shù)的幾何意義表示切線方程關(guān)鍵是切點(diǎn)和切點(diǎn)出的斜率值。
(2)求解導(dǎo)數(shù),然后對(duì)于含有參數(shù)的二次不等式的解集進(jìn)行分類討論得到。
解:(I)時(shí),,
于是,,
所以函數(shù)的圖象在點(diǎn)處的切線方程為,即
(II)
=,
,∴ 只需討論的符號(hào).
ⅰ)當(dāng)>2時(shí),>0,這時(shí)>0,所以函數(shù)在(-∞,+∞)上為增函數(shù).ⅱ)當(dāng)= 2時(shí),≥0,函數(shù)在(-∞,+∞)上為增函數(shù).
ⅲ)當(dāng)0<<2時(shí),令= 0,解得,
當(dāng)變化時(shí),的變化情況如下表:







+
0

0
+


極大值

極小值

為增函數(shù),為減函數(shù);
【備注題】(Ⅲ)是否存在實(shí)數(shù),使當(dāng)時(shí)恒成立?若存在,求出實(shí)數(shù);若不存在,請(qǐng)說(shuō)明理由.
當(dāng)∈(1,2)時(shí),∈(0,1).由(2)知上是減函數(shù),在上是增函數(shù),故當(dāng)∈(0,1)時(shí),,所以當(dāng)∈(0,1)時(shí)恒成立,等價(jià)于恒成立.
當(dāng)∈(1,2)時(shí),,設(shè),則,表明g(t) 在(0,1)上單調(diào)遞減,于是可得,即∈(1,2)時(shí)恒成立,因此,符合條件的實(shí)數(shù)不存在.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(理科班)(12分)已知R,函數(shù)e.
(1)若函數(shù)f(x)存在極大值,并記為g(m),求g(m)的表達(dá)式;
(2)當(dāng)m=0時(shí),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

計(jì)算的結(jié)果是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品, 根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè), 甲產(chǎn)品的利潤(rùn)與投資成正比, 其關(guān)系如圖1, 乙產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比, 其關(guān)系如圖2 (注: 利潤(rùn)與投資的單位: 萬(wàn)元).

(Ⅰ) 分別將甲、乙兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)關(guān)系式;
(Ⅱ) 該企業(yè)籌集了100萬(wàn)元資金投入生產(chǎn)甲、乙兩種產(chǎn)品, 問(wèn): 怎樣分配這100萬(wàn)元資金, 才能使企業(yè)獲得最大利潤(rùn), 其最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若曲線在點(diǎn)P處的切線的斜率等于3,則點(diǎn)P的坐標(biāo)為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)的極大值等于     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線在點(diǎn)(1,3)處的切線方程是(       )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線在點(diǎn)處的切線方程為_(kāi)_________________ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)的單調(diào)增區(qū)間是
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案