已知集合A={x∈R|0<x<3},B={x∈R|x2≥4},則A∪B=
(-∞,-2]∪(0,+∞)
(-∞,-2]∪(0,+∞)
分析:分析可得,B都是不等式的解集,由不等式的解法,容易解得B,進而可得A與B的交集即可.
解答:解:由不等式的解法,
容易解得B={x|x≥2或x≤-2},A={x∈R|0<x<3},
則A∪B={x|x>0或x≤-2},
故答案為:(-∞,-2]∪(0,+∞).
點評:本題考查集合間的交、并、補的混合運算,這類題目一般與不等式、方程聯(lián)系,難度不大,注意正確求解與分析集合間的關(guān)系即可.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知集合A={x∈R|
12
<2x<8},B={x∈R|-1<x<m+1},若x∈B成立的一個充分不必要的條件是x∈A,則實數(shù)m的取值范圍是
(2,+∞)
(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x∈R|ax2-3x+2=0,a∈R},若A中元素至多有1個,則a的取值范圍是
a=0或a≥
9
8
a=0或a≥
9
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•許昌三模)已知集合A={x∈R|x2≤4},B={x∈Z|
1
x
≤2
},則集合A∩B的子集個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•和平區(qū)一模)已知集合A={x∈R||x-55|≤
112
},則集合A中的最大整數(shù)為
60
60

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•順義區(qū)一模)已知集合A={x∈R|2x+1<0},B={(x+1)(x-2)<0},則A∩B=( 。

查看答案和解析>>

同步練習冊答案