已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的長(zhǎng)軸長(zhǎng)為4,若點(diǎn)P是橢圓C上任意一點(diǎn),過(guò)原點(diǎn)的直線l與橢圓相交于M、N兩點(diǎn),記直線PM、PN的斜率分別為KPM、KPN,當(dāng)KPMKPN=-
1
4
時(shí),則橢圓方程為(  )
分析:由長(zhǎng)軸長(zhǎng)易求a值,設(shè)P(x0,y0),直線l方程為y=kx,M(x1,kx1),N(-x1,-kx1),由KPMKPN=-
1
4
可得一等式,再由P在橢圓上可得一等式,由兩式可消去y0,由P為橢圓任意點(diǎn)可知該式與x0無(wú)關(guān),由此可求得b值.
解答:解:由長(zhǎng)軸長(zhǎng)為4得2a=4,解得a=2,
設(shè)P(x0,y0),直線l方程為y=kx,M(x1,kx1),N(-x1,-kx1),
則KPM=
y0-kx1
x0-x1
,KPN=
y0+kx1
x0+x1
,
KPMKPN=-
1
4
得,
y0-kx1
x0-x1
y0+kx1
x0+x1
=-
1
4
,即
y02-k2x12
x02-x12
=-
1
4
,
所以4y02=(4k2+1)x12-x02①,
又P在橢圓上,所以
x02
4
+
y02
b2
=1
,即4y02=4b2-b2x02,代入①式得4b2-b2x02=(4k2+1)x12-x02,
所以4b2=(4k2+1)x12+(b2-1)x02,
因?yàn)辄c(diǎn)P為橢圓上任意一點(diǎn),所以該式恒成立與x0無(wú)關(guān),
所以b2-1=0,解得b=1,
所以所求橢圓方程為
x2
4
+y2=1

故選D.
點(diǎn)評(píng):本題考查直線與圓錐曲線的位置關(guān)系,考查恒成立問(wèn)題,解決本題的關(guān)鍵是正確理解“點(diǎn)P的任意性”,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經(jīng)過(guò)點(diǎn)P(1,
3
2
)

(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長(zhǎng)為2
3
,右焦點(diǎn)F與拋物線y2=4x的焦點(diǎn)重合,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)A、B是橢圓C上的不同兩點(diǎn),點(diǎn)D(-4,0),且滿足
DA
DB
,若λ∈[
3
8
,
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過(guò)點(diǎn)A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點(diǎn),且以MN為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•房山區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長(zhǎng)軸長(zhǎng)是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)過(guò)點(diǎn)P(0,-2)的直線l交橢圓于M,N兩點(diǎn),且M,N不與橢圓的頂點(diǎn)重合,若以MN為直徑的圓過(guò)橢圓C的右頂點(diǎn)A,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長(zhǎng)為2,離心率為
2
2
,設(shè)過(guò)右焦點(diǎn)的直線l與橢圓C交于不同的兩點(diǎn)A,B,過(guò)A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案