如圖,菱形ABCD的邊長為6,∠BAD=60°,AC∩BD=O.將菱形ABCD沿對角線AC折起,得到三棱錐B-ACD,點M是棱BC的中點,DM=3
2


(1)求證:OM∥平面ABD;
(2)求證:平面ABC⊥平面MDO;
(3)求三棱錐D-ABC的體積.
分析:(1)利用菱形ABCD的特點,證明OM
.
1
2
AB,然后利用直線與平面平行的判定定理證明OM∥平面ABD;
(2)先證明OD⊥OM.OD⊥AC.OM∩AC=O,證明OD⊥平面ABC,然后證明平面ABC⊥平面MDO.
(3)判斷OD為三棱錐D-ABC的高,求出S△ABC,然后求解三棱錐的體積.
解答:解:(1)證明:因為點O是菱形ABCD的對角線的交點,
所以O是AC的中點,又M是棱BC的中點,
所以OM是△ABC的中位線,OM
.
1
2
AB,
因為OM?平面ABD,AB?平面ABD,
所以OM∥平面ABD;
(2)證明:由題意,OM=OD=3,
因為DM=3
2
,所以∠DOM=90°,OD⊥OM.
又因為菱形ABCD,所以OD⊥AC.
因為OM∩AC=O,
所以OD⊥平面ABC,
因為OD?平面MDO,
所以平面ABC⊥平面MDO.
(3)解:由(Ⅱ)知,OD⊥平面ABC,
所以OD=3為三棱錐D-ABC的高,
因為菱形ABCD的邊長為6,∠BAD=60°,
所以S△ABC=
3
4
×62
=9
3
,
所以所求三棱錐的體積為V,V=
1
3
×9
3
×3
=9
3

即三棱錐D-ABC的體積9
3
點評:本題考查平面與平面垂直的判定,棱柱、棱錐、棱臺的體積,直線與平面平行的判定,考查基本知識的靈活運用,邏輯推理能力與計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,菱形ABCD的邊長為1,有∠D=120°,點E、F分別是AD、DC的中點,BE、BF分別與AC交于點M、N.
(1)求AC的值.
(2)求MN的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•西城區(qū)二模)如圖,菱形ABCD的邊長為6,∠BAD=60°,AC∩BD=O.將菱形ABCD沿對角線AC折起,得到三棱錐B-ACD,點M是棱BC的中點,DM=3
2

(Ⅰ)求證:OM∥平面ABD;
(Ⅱ)求證:平面ABC⊥平面MDO;
(Ⅲ)求三棱錐M-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,菱形ABCD的邊長為4,∠BAD=60°,AC∪BD=O.將菱形ABCD沿對角線AC折起,得到三棱錐B-ACD,點M是棱BC的中點,DM=2
2

(1)求證:OM∥平面ABD;
(2)求證:平面DOM⊥平面ABC;
(3)求三棱錐B-DOM的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,菱形ABCD的邊長為4,∠BAD=60°,AC∩BD=O.將菱形ABCD沿對角線AC折起,得到三棱錐B-ACD,點M是棱BC的中點,DM=2
2

(1)求證:OM∥平面ABD;
(2)求證:平面DOM⊥平面ABC;
(3)求二面角D-AB-O余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,菱形ABCD的邊長為2,∠A=60°,M為DC的中點,若N為菱形內(nèi)任意一點(含邊界),則
AM
AN
的最大值為
9
9

查看答案和解析>>

同步練習冊答案