為了比較“傳統(tǒng)式教學法”與我校所創(chuàng)立的“三步式教學法”的教學效果.共選100名學生隨機分成兩個班,每班50名學生,其中一班采取“傳統(tǒng)式教學法”,二班實行“三步式教學法”
(Ⅰ)若全校共有學生2000名,其中男生1100名,現(xiàn)抽取100名學生對兩種教學方式的受歡迎程度進行問卷調查,應抽取多少名女生?
(Ⅱ)下表1,2分別為實行“傳統(tǒng)式教學”與“三步式教學”后的數(shù)學成績:
表1

數(shù)學成績
90分以下
90—120分
120—140分
140分以上
頻   數(shù)
15
20
10
5
表2
數(shù)學成績
90分以下
90—120分
120—140分
140分以上
頻   數(shù)
5
40
3
2
完成下面2×2列聯(lián)表,并回答是否有99%的把握認為這兩種教學法有差異.
班  次
120分以下(人數(shù))
120分以上(人數(shù))
合計(人數(shù))
一班
 
 
 
二班
 
 
 
合計
 
 
 
參考公式:,其中
參考數(shù)據(jù):
P(K2≥k0)
0.40
0.25
0.10
0.05
0.010
0.005
k0
0.708
1.323
2.706
3.841
6.635
7.879

(Ⅰ)人;(Ⅱ)見解析.

解析試題分析:(Ⅰ)此問為分層抽樣,直接根據(jù)比例計算即可;(Ⅱ)根據(jù)題意列出聯(lián)表,利用給出的公式計算即可.
試題解析:(Ⅰ) 設女生為x,則,                2分
解得名,∴女生抽取人.                          4分
(Ⅱ) 列聯(lián)表如下:

班  次
120分以下(人數(shù))
120分以上(人數(shù))
合計(人數(shù))
1班
35
15
50
2班
45
5
50
合計
80
20
100
                                                        7分
K2=                    10分
由此可知,有99%的把握認為這兩種教學法有差異.            12分
考點:1.分層抽樣;2.統(tǒng)計案例.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某工廠甲、乙兩個車間包裝同一種產(chǎn)品,在自動包裝傳送帶上每隔小時抽一包產(chǎn)品,稱其重量(單位:克)是否合格,分別記錄抽查數(shù)據(jù),獲得重量數(shù)據(jù)的莖葉圖如圖所示.

(1)根據(jù)樣品數(shù)據(jù),計算甲、乙兩個車間產(chǎn)品重量的平均值與方差,并說明哪個車間的產(chǎn)品的重量相對較穩(wěn)定;
(2)若從乙車間件樣品中隨機抽取兩件,求所抽取的兩件樣品的重量之差不超過克的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

生產(chǎn)A,B兩種元件,其質量按測試指標劃分為:指標大于或等于82為正品,小于82為次品.現(xiàn)隨機抽取這兩種元件各100件進行檢測,檢測結果統(tǒng)計如下:

測試指標
[70,76)
[76,82)
[82,88)
[88,94)
[94,100]
元件A
8
12
40
32
8
元件B
7
18
40
29
6
(Ⅰ)試分別估計元件A,元件B為正品的概率;
(Ⅱ)生產(chǎn)一件元件A,若是正品可盈利40元,若是次品則虧損5元;生產(chǎn)一件元件B,若是正品可盈利50元,若是次品則虧損10元.在(Ⅰ)的前提下,
(。┯沊為生產(chǎn)1件元件A和1件元件B所得的總利潤,求隨機變量X的分布列和數(shù)學期望;
(ⅱ)求生產(chǎn)5件元件B所獲得的利潤不少于140元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

有7名奧運會志愿者,其中志愿者通曉日語,通曉俄語, 通曉韓語,從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.
(1)求被選中的概率;(5分);(2)求不全被選中的概率.(5分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知A,B,C,D四個城市,它們各自有一個著名的旅游點,依次記為A,b,C,D,把A,B,C,D和A,b,C,D分別寫成左、右兩列.現(xiàn)在一名旅游愛好者隨機用4條線把城市與旅游點全部連接起來, 構成“一一對應”.規(guī)定某城市與自身的旅游點相連稱為“連對”,否則稱為“連錯”,連對一條得2分,連錯一條得0分.
(Ⅰ)求該旅游愛好者得2分的概率.
(Ⅱ)求所得分數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某數(shù)學老師對本校2013屆高三學生某次聯(lián)考的數(shù)學成績進行分析,按1:50進行分層抽樣抽取的20名學生的成績進行分析,分數(shù)用莖葉圖記錄如圖所示(部分數(shù)據(jù)丟失),得到頻率分布表如下:


(1)求表中的值及分數(shù)在范圍內的學生數(shù),并估計這次考試全校學生數(shù)學成績及格率(分數(shù)在范圍為及格);
(2)從大于等于110分的學生中隨機選2名學生得分,求2名學生的平均得分大于等于130分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某班50名學生在一次百米測試中,成績全部介于13秒與18秒之間,將測試結果按如下方式分成五組:每一組;第二組,……,第五組.右圖是按上述分組方法得到的頻率分布直方圖.

(I)若成績大于或等于14秒且小于16秒認為良好,求該班在這次百米測試中成績良好的人數(shù);
(II)設、表示該班某兩位同學的百米測試成績,且已知,求事件“”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

將編號為1,2,3,4的四個小球,分別放入編號為1,2,3,4的四個盒子,每個盒子中有且僅有一個小球.若小球的編號與盒子的編號相同,得1分,否則得0分.記為四個小球得分總和.
(1)求時的概率;
(2)求的概率分布及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了解某校高三畢業(yè)班報考體育專業(yè)學生的體重(單位:千克)情況,將從該市某學校抽取的樣本數(shù)據(jù)整理后得到如下頻率分布直方圖.已知圖中從左至右前3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.

(Ⅰ)求該校報考體育專業(yè)學生的總人數(shù)n;
(Ⅱ)若用這所學校的樣本數(shù)據(jù)來估計該市的總體情況,現(xiàn)從該市報考體育專業(yè)的學生中任選3人,設表示體重超過60千克的學生人數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案