精英家教網 > 高中數學 > 題目詳情
已知正四棱錐P—ABCD底面邊長為a,側棱長為a,側棱PB、PD的中點分別為M、N,則截面AMN與底面ABCD所成二面角的大小為

A.                  B.                  C.                D.

答案:B

解析:如圖,取正四棱錐底面ABCD的中心為O.

連結AO,PO,PO交MN于Q,則Q為PO中點.連結AQ,則∠QAO為所求.

∵PO⊥AO,AB=a,則AO=a,PA=a.

∴PO==.∴QO=.

∴tan∠QAO==1.故∠QAO為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知正四棱錐P-ABCD,PA=2,AB=
2
,M是側棱PC的中點,則異面直線PA與BM所成角為
 
精英家教網

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知正四棱錐P-ABCD的全面積為2,記正四棱錐的高為h.
(1)用h表示底面邊長,并求正四棱錐體積V的最大值;
(2)當V取最大值時,求異面直線AB和PD所成角的大小.
(結果用反三角函數值表示)

查看答案和解析>>

科目:高中數學 來源: 題型:

(理)已知正四棱錐P—ABCD中,PA=2,AB=,M是側棱PC的中點,則異面直線PA與BM所成角的大小為__________.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知正四棱錐P-ABCD的全面積為2,記正四棱錐的高為h.
(1)用h表示底面邊長,并求正四棱錐體積V的最大值;
(2)當V取最大值時,求異面直線AB和PD所成角的大。
(結果用反三角函數值表示)

查看答案和解析>>

科目:高中數學 來源:2006-2007學年北京市海淀區(qū)高三(上)期末數學試卷(理科)(解析版) 題型:填空題

已知正四棱錐P-ABCD,PA=2,AB=,M是側棱PC的中點,則異面直線PA與BM所成角為   

查看答案和解析>>

同步練習冊答案