分析:(1)用導(dǎo)數(shù)法判斷其單調(diào)性,第一步先求導(dǎo)數(shù),第二步判斷,當(dāng)導(dǎo)數(shù)大于零時,函數(shù)為增函數(shù),當(dāng)導(dǎo)數(shù)小于零時,函數(shù)為減函數(shù).(2)先構(gòu)造函數(shù),再判斷其單調(diào)性,然后求最值.
解答:解:(1)∵
f′1(x)=(2分)
則當(dāng)m>0時,在(-2,2)上函數(shù)f
1(x)單調(diào)遞增;
在(-∞,-2)及(2,+∞)上單調(diào)遞減.(4分)
當(dāng)m<0時,在(-2,2)上函數(shù)f
1(x)單調(diào)遞減;
在(-∞,-2)及(2,+∞)上單調(diào)遞增.(6分)
(2)由m<-2,,-2≤x≤2,可得
f2(x)=()x-m=2m•()x(8分)
∴
f(x)=f1(x)+f2(x)=+2m•()x由(1)知,當(dāng)m<-2,-2≤x≤2時,f
1(x)在[-2,2]上是減函數(shù),
而
f2(x)=2m•()x在[-2,2]上也是減函數(shù)(10分)
∴當(dāng)x=-2時,f(x)取最大值4•
2m-=2m+2-,
當(dāng)x=2時,f(x)取最小值
2m-2+(12分)
點評:本題主要考查導(dǎo)數(shù)法研究單調(diào)性,同進考查了求最值或值域時,必須先研究單調(diào)性.