【題目】36的所有正約數(shù)之和可按如下方法得到:因?yàn)?6=22×32 , 所以36的所有正約數(shù)之和為(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,參照上述方法,可得100的所有正約數(shù)之和為( )
A.217
B.273
C.455
D.651
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3ax. (Ⅰ)若函數(shù)f(x)在x=1處的切線斜率為2,求實(shí)數(shù)a;
(Ⅱ)若a=1,求函數(shù)f(x)在區(qū)間[0,3]的最值及所對應(yīng)的x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為: ,直線的方程為.
()當(dāng)時,求直線被圓截得的弦長;
()當(dāng)直線被圓截得的弦長最短時,求直線的方程;
()在()的前提下,若為直線上的動點(diǎn),且圓上存在兩個不同的點(diǎn)到點(diǎn)的距離為,求點(diǎn)的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是對數(shù)函數(shù).
(1) 若函數(shù),討論的單調(diào)性;
(2) 若,不等式的解集非空,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) , ,(a>0).若對任意實(shí)數(shù)x1 , 都存在正數(shù)x2 , 使得g(x2)=f(x1)成立,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某廠工人生產(chǎn)某種產(chǎn)品的能力,隨機(jī)抽查了20位工人某天生產(chǎn)該產(chǎn)品的數(shù)量.產(chǎn)品數(shù)量的分組區(qū)間為[45,55),[55,65),[65,75),[75,85),[85,95)由此得到頻率分布直方圖如圖.則產(chǎn)品數(shù)量位于[55,65)范圍內(nèi)的頻率為;這20名工人中一天生產(chǎn)該產(chǎn)品數(shù)量在[55,75)的人數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓的直徑為, 為直徑延長線上的一點(diǎn), , 為半圓上任意一點(diǎn),以為一邊作等邊三角形,設(shè) .
(1)當(dāng)為何值時,四邊形面積最大,最大值為多少;
(2)當(dāng)為何值時, 長最大,最大值為多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某加油站20名員工日銷售量的頻率分布直方圖,如圖所示:
(1)補(bǔ)全該頻率分布直方圖在[20,30)的部分,并分別計算日銷售量在 [10,20),[20,30)的員工數(shù);
(2)在日銷量為[10,30)的員工中隨機(jī)抽取2人,求這兩名員工日銷量在 [20,30)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com