設(shè)命題P:關(guān)于x的不等式a1x2+b1x+c1>0與a2x2+b2x+c2>0的解集相同;命題Q:,則命題Q是命題P的( )
A.充要條件
B.充分非必要條件
C.必要非充分條件
D.既不充分也不必要條件
【答案】分析:通過舉反例即可判斷.
解答:解:通過舉反例a1=b1=c1=1,a2=b2=c2=-1,可知Q不是P的充分條件,由不等式(x-1)2+1>0和(x-1)2+2>0的解集都是R,即M=N=R,但不等式整理成標準形式后它們的同類項系數(shù)之比不相等.故選D.
點評:通過舉反例來說明某個命題不正確,是一種簡單有效的方法.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題P:關(guān)于x的不等式a1x2+b1x+c1>0與a2x2+b2x+c2>0的解集相同;命題Q:
a1
a2
=
b1
b2
=
c1
c2
,則命題Q是命題P的(  )
A、充要條件
B、充分非必要條件
C、必要非充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題P:關(guān)于x的不等式a1x2+b1x+c1>0與a2x2+b2x2+c2>0的解集相同;命題Q:,則命題Q是命題P的(    )

A.充分但不必要條件                      B.必要但不充分條件

C.充要條件                                    D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:同步題 題型:解答題

設(shè)命題p:關(guān)于x 的不等式x2+2ax+4>0 對一切x ∈R 恒成立,q:函數(shù)f(x)=-(4-2a)x 在(- ∞,+ ∞)上是減函數(shù).是否存在實數(shù)a ,使得兩個命題中有且僅有一個是真命題?若存在,求出實數(shù)a 的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國高校自主招生數(shù)學(xué)模擬試卷(十一)(解析版) 題型:選擇題

設(shè)命題P:關(guān)于x的不等式a1x2+b1x+c1>0與a2x2+b2x+c2>0的解集相同;命題Q:,則命題Q是命題P的( )
A.充要條件
B.充分非必要條件
C.必要非充分條件
D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案