(本小題滿分14分)已知圓的圓心為原點(diǎn),且與直線相切。

(1)求圓的方程;
(2)點(diǎn)在直線上,過(guò)點(diǎn)引圓的兩條切線,切點(diǎn)為,求證:直線恒過(guò)定點(diǎn)。
(1)(2)利用直線是兩個(gè)圓的公共弦求出直線的方程即可證明.

試題分析:
(1)根據(jù)點(diǎn)到直線的距離公式可知圓的半徑,
所以圓的方程為。                                                     ……5分
(2)是圓的兩條切線,
。
在以為直徑的圓上。
設(shè)點(diǎn)的坐標(biāo)為,
則線段的中點(diǎn)坐標(biāo)為。
為直徑的圓方程為                      ……10分
化簡(jiǎn)得:,
為兩圓的公共弦,
直線的方程為
所以直線恒過(guò)定點(diǎn)                                                       ……14分
點(diǎn)評(píng):圓有標(biāo)準(zhǔn)方程和一般方程兩種形式,要根據(jù)問(wèn)題選擇恰當(dāng)?shù)男问竭M(jìn)行運(yùn)算;兩個(gè)圓相交時(shí),兩個(gè)圓的方程作差所得直線方程即為兩個(gè)圓的公共弦所在的直線方程,另外,直線過(guò)定點(diǎn)問(wèn)題也經(jīng)常考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

以雙曲線的離心率為半徑,右焦點(diǎn)為圓心的圓與雙曲線的漸近線相切,則的值為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C:(a>b>0)的右焦點(diǎn)為F(1,0),離心率為,P為左頂點(diǎn)。
(1)求橢圓C的方程;
(2)設(shè)過(guò)點(diǎn)F的直線交橢圓C于A,B兩點(diǎn),若△PAB的面積為,求直線AB的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若拋物線上一點(diǎn)到其焦點(diǎn)的距離等于4,則     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)定點(diǎn)M(3,)與拋物線=2x上的點(diǎn)P的距離為,P到拋物線準(zhǔn)線l的距為,則取最小值時(shí),P點(diǎn)的坐標(biāo)為
A.(0,0)B.(1,C.(2,2)D.(,-

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

從拋物線上任意一點(diǎn)向圓作切線,則切線長(zhǎng)的最小值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知直線經(jīng)過(guò)橢圓的左頂點(diǎn)A和上頂點(diǎn)D,橢圓的右頂點(diǎn)為,點(diǎn)和橢圓上位于軸上方的動(dòng)點(diǎn),直線,與直線分別交于兩點(diǎn)。

(I)求橢圓的方程;
(Ⅱ)求線段MN的長(zhǎng)度的最小值;
(Ⅲ)當(dāng)線段MN的長(zhǎng)度最小時(shí),在橢圓上是否存在這
樣的點(diǎn),使得的面積為?若存在,確定點(diǎn)的個(gè)數(shù),若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果過(guò)曲線上點(diǎn)處的切線平行于直線,那么點(diǎn)的坐標(biāo)為
A.B.C.D.(

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓,橢圓的長(zhǎng)軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓上,,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案