若函數(shù)y=f(x)在R上可導且滿足不等式xf′(x)+f(x)>0恒成立,且常數(shù)a,b滿足a>b,則下列不等式一定成立的是( 。
分析:構造g(x)=xf(x),利用其單調性即可得出.
解答:解:令g(x)=xf(x),則g′(x)=xf′(x)+f(x)>0,
∴函數(shù)g(x)在R上單調遞增.
∵a>b,
∴g(a)>g(b),∴af(a)>bf(b).
故選A.
點評:正確構造g(x)=xf(x)和熟練掌握利用導數(shù)研究和的單調性是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知變量t,y滿足關系式loga
t
a3
=logt
y
a3
,a>0且a≠1,t>0且t≠1,變量t,x滿足關系式t=ax,變量y,x滿足函數(shù)關系式y(tǒng)=f(x).
(1)求函數(shù)y=f(x)表達式;
(2)若函數(shù)y=f(x)在[2a,3a]上具有單調性,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
38
x2-2x+2+ln x.
(Ⅰ)求函數(shù)y=f(x)的單調區(qū)間;
(Ⅱ)若函數(shù)y=f(x)在[em,+∞)(m∈Z)上有零點,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=-x2+2ax-3a.
(Ⅰ)若函數(shù)y=f(x)在(-∞,1)上是增函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)當函數(shù)f(x)在[1,2]上的最大值為4時,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(2x)=x2-2ax+3
(1)求函數(shù)y=f(x)的解析式
(2)若函數(shù)y=f(x)在[
12
,8]上的最小值為-1,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)在(0,+∞)上的導函數(shù)為f′(x),且不等式xf′(x)>f(x)恒成立,又常數(shù)a,b滿足a>b>0,則下列不等式一定成立的是
 

①bf(a)>af(b);②af(a)>bf(b);③bf(a)<af(b);④af(a)<bf(b).

查看答案和解析>>

同步練習冊答案