【題目】如圖,四棱錐P﹣ABCD中,所有棱長均為2,O是底面正方形ABCD中心,E為PC中點(diǎn),則直線OE與直線PD所成角為(
A.30°
B.60°
C.45°
D.90°

【答案】B
【解析】解:根據(jù)條件知,P點(diǎn)在底面ABCD的射影為O, 連接AC,BD,PO,則OB,OC,OP三直線兩兩垂直,
從而分別以這三直線為x,y,z軸,建立如圖所示空間直角坐標(biāo)系:

設(shè)棱長為2,則:O(0,0,0),C(0, ,0),
PP(0,0, ),E(0, ,
A(0,﹣ ,0),B( ,0,0),D(﹣ ,0,0)
,

∴OE與PD所成角為60°.故選:B.
可連接BD,AC,OP,由已知條件便知這三直線兩兩垂直,從而可分別以這三直線為x,y,z軸,建立空間直角坐標(biāo)系,可設(shè)棱長為2,從而可求出圖形中一些點(diǎn)的坐標(biāo),據(jù)向量夾角的余弦公式便可求出

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某村積極開展“美麗鄉(xiāng)村生態(tài)家園”建設(shè),現(xiàn)擬在邊長為1千米的正方形地塊ABCD上劃出一片三角形地塊CMN建設(shè)美麗鄉(xiāng)村生態(tài)公園,給村民休閑健身提供去處.點(diǎn)M,N分別在邊AB,AD上. (Ⅰ)當(dāng)點(diǎn)M,N分別是邊AB,AD的中點(diǎn)時,求∠MCN的余弦值;
(Ⅱ)由于村建規(guī)劃及保護(hù)生態(tài)環(huán)境的需要,要求△AMN的周長為2千米,請?zhí)骄俊螹CN是否為定值,若是,求出此定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某四面體的三視圖,則該四面體的外接球半徑為(
A.2
B.
C.
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= . (Ⅰ)求函數(shù)f(x)的定義域和值域;
(Ⅱ)判斷函數(shù)f(x)的奇偶性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x﹣3)2+(y﹣4)2=4,直線l過定點(diǎn)A(1,0).
(1)若l與圓C相切,求l的方程;
(2)若l與圓C相交于P、Q兩點(diǎn),若|PQ|=2 ,求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方體ABCD﹣A1B1C1D1中,BC=2AB=4, ,E是A1D1的中點(diǎn).
(Ⅰ)在平面A1B1C1D1內(nèi),請作出過點(diǎn)E與CE垂直的直線l,并證明l⊥CE;
(Ⅱ)設(shè)(Ⅰ)中所作直線l與CE確定的平面為α,求點(diǎn)C1到平面α的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義函數(shù)序列: ,f2(x)=f(f1(x)),f3(x)=f(f2(x)),…,fn(x)=f(fn1(x)),則函數(shù)y=f2017(x)的圖像與曲線 的交點(diǎn)坐標(biāo)為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)g(x)=x2﹣2,f(x)= ,則f(x)的值域是(
A.
B.[0,+∞)??
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若執(zhí)行如圖的程序框圖,則輸出的a值是(
A.2
B.﹣
C.﹣
D.﹣2

查看答案和解析>>

同步練習(xí)冊答案