精英家教網(wǎng)某企業(yè)有兩個(gè)生產(chǎn)車間分別在A、B兩個(gè)位置,A車間有100名員工,B車間有400名員工,現(xiàn)要在公路AC上找一點(diǎn)D,修一條公路BD,并在D處建一個(gè)食堂,使得所有員工均在此食堂用餐,已知A、B、C中任意兩點(diǎn)間的距離均是1km,設(shè)∠BDC=α,所有員工從車間到食堂步行的總路程為S.
(1)寫出S關(guān)于α的函數(shù)表達(dá)式,并指出α的取值范圍;
(2)問(wèn)食堂D建在距離A多遠(yuǎn)時(shí),可使總路程S最少?
分析:(1)在△BCD中先利用正弦定理求得BD,和CD的表達(dá)式,進(jìn)而表示出AD,則總路程S與α的關(guān)系可得.
(2)對(duì)函數(shù)S進(jìn)行求導(dǎo),令S'=0求得cosα的值,進(jìn)而根據(jù)導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性的方法,可推斷出當(dāng)cosα>
1
4
時(shí),當(dāng)cosα<
1
4
和當(dāng)cosα=
1
4
函數(shù)的單調(diào)性和函數(shù)的最小值,進(jìn)而求得總路程最小時(shí)AD的長(zhǎng).
解答:解:(1)在△BCD中,∵
BD
sin60°
=
BC
sinα
=
CD
sin(120°-α)

BD=
3
2
sinα
,CD=
sin(120°-α)
sinα

AD=1-
sin(120°-α)
sinα

S=400•
3
2
sinα
+100[1-
sin(120°-α)
sinα
]=50-50
3
cosα-4
sinα
,其中
π
3
≤α<
3


(2)S′=-50
3
-sinα•sinα-(cosα-4)cosα
sin2α
=50
3
1-4cosα
sin2α

令S'=0,得cosα=
1
4

當(dāng)cosα>
1
4
時(shí),S'<0,S是α的單調(diào)減函數(shù);
當(dāng)cosα<
1
4
時(shí),S'>0,S是α的單調(diào)增函數(shù).
∴當(dāng)cosα=
1
4
時(shí),S取得最小值.
此時(shí),sinα=
15
4
,
AD=1-
sin(120°-α)
sinα
=1-
3
2
cosα+
1
2
sinα
sinα
=
1
2
-
3
cosα
2sinα
=
1
2
-
3
2
1
4
15
4
=
1
2
-
5
10
點(diǎn)評(píng):本題主要考查了基本不等式在最值問(wèn)題中的應(yīng)用.考查了學(xué)生分析問(wèn)題和解決實(shí)際問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省三明市畢業(yè)班5月質(zhì)量檢查理科數(shù)學(xué)試卷(解析版) 題型:解答題

某企業(yè)有兩個(gè)生產(chǎn)車間,分別位于邊長(zhǎng)是的等邊三角形的頂點(diǎn)處(如圖),現(xiàn)要在邊上的點(diǎn)建一倉(cāng)庫(kù),某工人每天用叉車將生產(chǎn)原料從倉(cāng)庫(kù)運(yùn)往車間,同時(shí)將成品運(yùn)回倉(cāng)庫(kù).已知叉車每天要往返車間5次,往返車間20次,設(shè)叉車每天往返的總路程為.(注:往返一次即先從倉(cāng)庫(kù)到車間再由車間返回倉(cāng)庫(kù))

(Ⅰ)按下列要求確定函數(shù)關(guān)系式:

①設(shè)長(zhǎng)為,將表示成的函數(shù)關(guān)系式;

②設(shè),將表示成的函數(shù)關(guān)系式.

(Ⅱ)請(qǐng)你選用(Ⅰ)中一個(gè)合適的函數(shù)關(guān)系式,求總路程 的最小值,并指出點(diǎn)的位置.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省南京市白下區(qū)高三二模數(shù)學(xué)試卷 題型:解答題

(本小題滿分15分)

某企業(yè)有兩個(gè)生產(chǎn)車間分別在A,B兩個(gè)位置,A車間有100名員工,B車間有400名員工,現(xiàn)要在公路AC上找一點(diǎn)D,修一條公路BD,并在D處建一個(gè)食堂,使得所有員工均在此食堂用餐,已知A,B,C中任意兩點(diǎn)間的距離均有1 km,設(shè)∠BDC,所有員工從車間到食堂步行的總路程為S

(1)寫出S關(guān)于的函數(shù)表達(dá)式,并指出的取值范圍;

(2)問(wèn)食堂D建在距離A多遠(yuǎn)時(shí),可使總路程S最少?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分15分)

某企業(yè)有兩個(gè)生產(chǎn)車間分別在AB兩個(gè)位置,A車間有100名員工,B車間有400名員工,現(xiàn)要在公路AC上找一點(diǎn)D,修一條公路BD,并在D處建一個(gè)食堂,使得所有員工均在此食堂用餐,已知A,BC中任意兩點(diǎn)間的距離均有1 km,設(shè)∠BDC,所有員工從車間到食堂步行的總路程為S

(1)寫出S關(guān)于的函數(shù)表達(dá)式,并指出的取值范圍;

(2)問(wèn)食堂D建在距離A多遠(yuǎn)時(shí),可使總路程S最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省蘇州市五市三區(qū)高三(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

某企業(yè)有兩個(gè)生產(chǎn)車間分別在A、B兩個(gè)位置,A車間有100名員工,B車間有400名員工,現(xiàn)要在公路AC上找一點(diǎn)D,修一條公路BD,并在D處建一個(gè)食堂,使得所有員工均在此食堂用餐,已知A、B、C中任意兩點(diǎn)間的距離均是1km,設(shè)∠BDC=α,所有員工從車間到食堂步行的總路程為S.
(1)寫出S關(guān)于α的函數(shù)表達(dá)式,并指出α的取值范圍;
(2)問(wèn)食堂D建在距離A多遠(yuǎn)時(shí),可使總路程S最少?

查看答案和解析>>

同步練習(xí)冊(cè)答案