已知拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過(guò)雙曲線
x2
a2
-
y2
b2
=1的一個(gè)焦點(diǎn),并且這條準(zhǔn)線與雙曲線的兩焦點(diǎn)的連線垂直,拋物線與雙曲線交于點(diǎn)P(
3
2
,
6
),求拋物線方程和雙曲線方程.
分析:首先根據(jù)拋物線的準(zhǔn)線過(guò)雙曲線的焦點(diǎn),可得p=2c,再利用拋物線與雙曲線同過(guò)P(
3
2
,
6
),求出c、p的值,進(jìn)而結(jié)合雙曲線的性質(zhì)a2+b2=c2,求解即可.
解答:解:設(shè)拋物線方程為y2=2px(p>0),
∵點(diǎn)(
3
2
,
6
)在拋物線上,∴6=2p•
3
2
,∴p=2,
∴所求拋物線方程為y2=4x.
∵雙曲線左焦點(diǎn)在拋物線的準(zhǔn)線x=-1上,
∴c=1,即a2+b2=1,又點(diǎn)(
3
2
,
6
)在雙曲線上,
(
3
2
)2
a2
-
6
2
b2
=1
a2+b2=1
,解得
a2=
1
4
b2=
3
4

∴所求雙曲線方程為
x2
1
4
-
y2
3
4
=1,即4x2-
4y2
3
=1
點(diǎn)評(píng):本題考查了拋物線和雙曲線方程的求法:待定系數(shù)法,熟練掌握?qǐng)A錐曲線的性質(zhì)是解題的關(guān)鍵,同時(shí)考查了學(xué)生的基本運(yùn)算能力與運(yùn)算技巧.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013屆天津市高二第一學(xué)期期末理科數(shù)學(xué)試卷 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過(guò)雙曲線=1的一個(gè)焦點(diǎn),并且這條準(zhǔn)線與雙曲線的兩焦點(diǎn)的連線垂直,拋物線與雙曲線交于點(diǎn)P,求拋物線方程和雙曲線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過(guò)雙曲線
x2
a2
-
y2
b2
=1的一個(gè)焦點(diǎn),并且這條準(zhǔn)線與雙曲線的兩焦點(diǎn)的連線垂直,拋物線與雙曲線交于點(diǎn)P(
3
2
,
6
),求拋物線方程和雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年天津一中高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過(guò)雙曲線-=1的一個(gè)焦點(diǎn),并且這條準(zhǔn)線與雙曲線的兩焦點(diǎn)的連線垂直,拋物線與雙曲線交于點(diǎn)P(,),求拋物線方程和雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年天津一中高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),它的準(zhǔn)線過(guò)雙曲線-=1的一個(gè)焦點(diǎn),并且這條準(zhǔn)線與雙曲線的兩焦點(diǎn)的連線垂直,拋物線與雙曲線交于點(diǎn)P(,),求拋物線方程和雙曲線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案