精英家教網 > 高中數學 > 題目詳情
(2013•臨沂三模)已知橢圓C經過點M(1,
32
)
,其左頂點為N,兩個焦點為(-1,0),(1,0),平行于MN的直線l交橢圓于A,B兩個不同的點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求證:直線MA,MB與x軸始終圍成一個等腰三角形.
分析:(Ⅰ)由題意設出橢圓方程,把點M的坐標代入橢圓方程,結合隱含條件a2=b2+c2可求解a2,b2,則橢圓的方程可求;
(Ⅱ)由橢圓方程求出頂點N的坐標,求出MN的斜率,設出直線l的斜截式方程,和橢圓聯(lián)立后利用根與系數的關系求出A,B兩點的橫坐標的和與積,由兩點式寫出MA和MB的斜率,作和后化為含有直線l的截距的代數式,整理得到結果為0,所以結論得證.
解答:(Ⅰ)解:設橢圓的方程為
x2
a2
+
y2
b2
=1
(a>b>0),因為過點M(1,
3
2
)

所以
1
a2
+
9
4b2
=1
 ①
又c=1,所以a2=b2+c2=b2+1 ②
由①②可得a2=4,b2=3.
故橢圓C的方程為
x2
4
+
y2
3
=1

(Ⅱ)證明:由(Ⅰ)知,N(-2,0),M(1,
3
2
)
,所以kMN=
3
2
-0
1-(-2)
=
1
2

故設直線l:y=
1
2
x+m,A(x1,y1),B(x2,y2)

聯(lián)立
x2
4
+
y2
3
=1
y=
1
2
x+m
,得x2+mx+m2-3=0.
x1+x2=-m,x1x2=m2-3
kMA+kMB=
y1-
3
2
x1-1
+
y2-
3
2
x2-1
=
1
2
x1+m-
3
2
x1-1
+
1
2
x2+m-
3
2
x2-1

=1+
m-1
x1-1
+
m-1
x2-1
=1+(m-1)•
x1+x2-2
x1x2-(x1+x2)+1

=1+(m-1)•
-m-2
m2-3+m+1
=1-
(m-1)(m+2)
m2+m-2
=1-1=0.
故直線MA,MB與x軸始終圍成一個等腰三角形.
點評:本題考查了橢圓的標準方程,考查了直線與圓錐曲線的關系,考查了數學轉化思想方法和學生的計算能力,屬難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•臨沂三模)設a=log23,b=log43,c=
1
2
,則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•臨沂三模)復數z滿足方程z=(z-2)i(i為虛數單位),則z=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•臨沂三模)甲、乙兩名運動員在某項測試中的6次成績如莖葉圖所示,
.
x
1
,
.
x
2
分別表示甲乙兩名運動員這項測試成績的平均數,s1,s2分別表示甲乙兩名運動員這項測試成績的標準差,則有(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•臨沂三模)如圖是函數f(x)=x2+ax+b的部分圖象,函數g(x)=ex-f'(x)的零點所在的區(qū)間是(k,k+1)(k∈z),則k的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•臨沂三模)函數y=sin(πx+φ)(φ>0)的部分圖象如圖所示,設P是圖象的最高點,A,B是圖象與x軸的交點,則tan∠APB=(  )

查看答案和解析>>

同步練習冊答案