設(shè),

(1)當(dāng)時,求曲線處的切線方程;

(2)如果存在,使得成立,求滿足上述條件的最大整數(shù);

(3)如果對任意的,都有成立,求實數(shù)的取值范圍

 

【答案】

(1)當(dāng)時,,,

所以曲線處的切線方程為.       (3分)

 

 

考察, ,

遞減

極(最)小值

遞增

   

 

 

 

 

由上表可知:

,

所以滿足條件的最大整數(shù).                          (7分)

 

 

,下證當(dāng)時,在區(qū)間上,函數(shù)恒成立.

當(dāng)時,

,  

當(dāng);當(dāng),

 

 

即對任意,都有.                    (12分)

方法二:當(dāng)時,恒成立

等價于恒成立,

 

 

當(dāng)時,,時,

即函數(shù)在區(qū)間上遞增,在區(qū)間上遞減,

所以,所以

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年福建省高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)

(1)當(dāng)時,求曲線處的切線方程;

(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

(3)在(2)的條件下,設(shè)函數(shù),若對于 [1,2], [0,1],使成立,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù),.

(1)當(dāng)時,函數(shù)處有極小值,求函數(shù)的單調(diào)遞增區(qū)間;

(2)若函數(shù)有相同的極大值,且函數(shù)在區(qū)間上的最大值為,求實數(shù)的值(其中是自然對數(shù)的底數(shù)).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆吉林省長春市高二下學(xué)期期初理科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè),函數(shù).

(1)當(dāng)時,求函數(shù)的單調(diào)增區(qū)間;

(2)若時,不等式恒成立,實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省高三第一次質(zhì)量檢測理科數(shù)學(xué) 題型:解答題

(本小題滿分12分)設(shè)函數(shù)。

(1)當(dāng)時,求的單調(diào)區(qū)間。

(2)若上的最大值為,求的值。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省高三上學(xué)期第一次月考理科數(shù)學(xué)卷 題型:解答題

(12分)設(shè)集合,.  

(1)當(dāng)時,求A的非空真子集的個數(shù);

(2)若B=,求m的取值范圍;         (3)若,求m的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案