【題目】已知函數(shù)是定義在R上的偶函數(shù),且當(dāng)時(shí),.

1)當(dāng)時(shí),求的表達(dá)式:

2)求在區(qū)間的最大值的表達(dá)式;

3)當(dāng)時(shí),若關(guān)于x的方程a,)恰有10個(gè)不同實(shí)數(shù)解,求a的取值范圍.

【答案】1;(2;(3

【解析】

1)根據(jù)偶函數(shù)的特點(diǎn),可知,可得結(jié)果.

2)采用分類(lèi)討論方法,,去掉絕對(duì)值研究函數(shù)在區(qū)間上的單調(diào)性,可得結(jié)果.

3)畫(huà)出函數(shù)圖像,利用換元法,得出,可轉(zhuǎn)化為兩個(gè)根為,可得,最后計(jì)算可得結(jié)果.

1)令,則

由當(dāng)時(shí),

所以

又函數(shù)是定義在R上的偶函數(shù),

所以

所以當(dāng)時(shí),

2)當(dāng)時(shí),

如圖

可知函數(shù)的最大值在處取得,

所以,

①若,此時(shí)

②若,此時(shí);

當(dāng)時(shí),,對(duì)稱軸為

③若,即時(shí),則

④若,即時(shí),則

綜上,得

3)當(dāng)時(shí),

如圖

的圖象可知,

當(dāng)時(shí),方程有兩解;

當(dāng)時(shí),方程有四解;

當(dāng)時(shí),方程有六解;

當(dāng)時(shí),方程有三解;

當(dāng)時(shí),方程無(wú)解.

要使方程a,

恰有10個(gè)不同實(shí)數(shù)解,

則關(guān)于t的方程的一個(gè)根為1,

另一個(gè)根,設(shè),則有

所以a的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是( )

A.命題“若,則”的逆否命題是“若,則

B.”是“”的充分不必要條件

C.為假命題,則、均為假命題

D.命題:“,使得”,則非:“,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,城市缺水問(wèn)題較為突出,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個(gè)合理的居民月用水量標(biāo)準(zhǔn):(單位:噸),用水量不超過(guò)的部分按平價(jià)收費(fèi),超過(guò)的部分按議價(jià)收費(fèi),為了了解全布市民用用水量分布情況,通過(guò)袖樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照 …… 分成9組,制成了如圖所示的頻率分布直方圖

1)求頻率分布直方圖中的值;

2)若該市政府看望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)(噸),估計(jì)的值,并說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)求函數(shù)的單調(diào)區(qū)間和極值;

2)若函數(shù)在區(qū)間上存在唯一零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),以極軸為軸的正半軸,取相同的單位長(zhǎng)度,建立平面直角坐標(biāo)系,直線的參數(shù)方程為 .

(1)寫(xiě)出直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)曲線經(jīng)過(guò)伸縮變換得到曲線,曲線上任一點(diǎn)為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分13分)

為回饋顧客,某商場(chǎng)擬通過(guò)摸球兌獎(jiǎng)的方式對(duì)1000位顧客進(jìn)行獎(jiǎng)勵(lì),規(guī)定:每位顧客從一個(gè)裝有4個(gè)標(biāo)有面值的球的袋中一次性隨機(jī)摸出2個(gè)球,球上所標(biāo)的面值之和為該顧客所獲的獎(jiǎng)勵(lì)額.

1)若袋中所裝的4個(gè)球中有1個(gè)所標(biāo)的面值為50元,其余3個(gè)均為10元,求

顧客所獲的獎(jiǎng)勵(lì)額為60元的概率

顧客所獲的獎(jiǎng)勵(lì)額的分布列及數(shù)學(xué)期望;

2)商場(chǎng)對(duì)獎(jiǎng)勵(lì)總額的預(yù)算是60000元,并規(guī)定袋中的4個(gè)球只能由標(biāo)有面值10元和50元的兩種球組成,或標(biāo)有面值20元和40元的兩種球組成.為了使顧客得到的獎(jiǎng)勵(lì)總額盡可能符合商場(chǎng)的預(yù)算且每位顧客所獲的獎(jiǎng)勵(lì)額相對(duì)均衡,請(qǐng)對(duì)袋中的4個(gè)球的面值給出一個(gè)合適的設(shè)計(jì),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求的單調(diào)區(qū)間;

(2)求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校對(duì)高二600名學(xué)生進(jìn)行了一次知識(shí)測(cè)試,并從中抽取了部分學(xué)生的成績(jī)(滿分100分)作為樣本,繪制了下面尚未完成的頻率分布表和頻率分布直方圖.

1)填寫(xiě)頻率分布表中的空格,補(bǔ)全頻率分布直方圖,并標(biāo)出每個(gè)小矩形對(duì)應(yīng)的縱軸數(shù)據(jù);

分組

頻數(shù)

頻率

2

004

8

016

10

________

________

________

14

028

合計(jì)

________

100

2)請(qǐng)你估算該年級(jí)學(xué)生成績(jī)的中位數(shù);

3)如果用分層抽樣的方法從樣本分?jǐn)?shù)在的人中共抽取6人,再?gòu)?/span>6人中選2人,求2人分?jǐn)?shù)都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,是函數(shù)(其中常數(shù))圖象上的兩個(gè)動(dòng)點(diǎn),點(diǎn),若的最小值為0,則函數(shù)的最大值為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案