如圖,在四棱錐中,平面平面,,.
(1)證明:平面
(2)求直線與平面所成的角的正切值.
(1)詳見解析;(2).

試題分析:(1)連結(jié),在直角梯形中,由勾股定理證明,再證平面平面,從而平面;(2)在直角梯形中,證明,再證平面.
的延長線交于,連結(jié),證明平面,從而可得是直線與平面所成的角.在中,求,在中,求,在中,求,
即得直線與平面所成的角的正切值.
(1)連結(jié),在直角梯形中,由,
,即,
又平面平面,從而平面.
(2)在直角梯形中,由,
又平面平面,所以平面.
的延長線交于,連結(jié),則平面,
所以是直線與平面所成的角.
中,由,,得,
中,,得
中,由,
所以直線與平面所成的角的正切值是.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖平面SAC⊥平面ACB,ΔSAC是邊長為4的等邊三角形,ΔACB為直角三角形,∠ACB=90,BC=,求二面角S-AB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知三棱錐中,,,,,分別是中點.

(1)求證:;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱柱中,底面是等腰梯形,,是線段的中點.

(Ⅰ)求證:;
(Ⅱ)若垂直于平面,求平面和平面所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是正方形,側(cè)棱⊥底面 ,的中點,作于點
(1)求證:平面;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1.

(1)證明:A1C⊥平面BB1D1D;
(2)求平面OCB1與平面BB1D1D的夾角θ的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正四棱柱ABCD-ABCD中,底面邊長為2,側(cè)棱長為4,點E、F分別為棱AB、BC的中點,EF∩BD=G,求點D到平面BEF的距離d。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是兩條不同直線,是兩個不同的平面,給出下列命題:
①若,則;②若,則;③若,則;④若,則,其中正確的命題是(   )
A.①②B.②③C.③④D.①③

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

[2013·東城模擬]如圖,在四面體ABCD中,若截面PQMN是正方形,則在下列命題中,錯誤的為(  )
A.AC⊥BD
B.AC∥截面PQMN
C.AC=BD
D.異面直線PM與BD所成的角為45°

查看答案和解析>>

同步練習冊答案