函數(shù),若(其中、均大于2),則的最小值為

    A.            B.              C.            D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,在定義域x∈[-2,2]上表示的曲線過(guò)原點(diǎn),且在x=±1處的切線斜率均為-1.有以下命題:①f(x)是奇函數(shù);②若f(x)在[s,t]內(nèi)遞減,則|t-s|的最大值為4;③f(x)的最大值為M,最小值為m,則M+m=0.④若對(duì)?x∈[-2,2],k≤f'(x)恒成立,則k的最大值為2.其中正確命題的個(gè)數(shù)有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,在定義域x∈[-2,2]上表示的曲線過(guò)原點(diǎn),且在x=±1處的切線斜率均為-1.有以下命題:
①f(x)是奇函數(shù);②若f(x)在[s,t]內(nèi)遞減,則|t-s|的最大值為4;③f(x)的最大值為M,最小值為m,則M+m=0; ④若對(duì)?x∈[-2,2],k≤f′(x)恒成立,則k的最大值為2.其中正確命題的序號(hào)為
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種特色水果每年的上市時(shí)間從4月1號(hào)開(kāi)始僅能持續(xù)5個(gè)月的時(shí)間.上市初期價(jià)格呈現(xiàn)上漲態(tài)勢(shì),中期價(jià)格開(kāi)始下跌,后期價(jià)格在原有價(jià)格基礎(chǔ)之上繼續(xù)下跌.現(xiàn)有三種價(jià)格變化的模擬函數(shù)可選擇:①f(x)=p•qx;②f(x)=px2+qx+7;③f(x)=logq(x+p).其中p,q均為常數(shù)且q>1.(注:x表示上市時(shí)間,f(x)表示價(jià)格,記x=0表示4月1號(hào),x=1表示5月1號(hào),…,以此類推,x∈[0,5])
(Ⅰ)在上述三個(gè)價(jià)格模擬函數(shù)中,哪一個(gè)更能體現(xiàn)該種水果的價(jià)格變化態(tài)勢(shì),請(qǐng)你選擇,并簡(jiǎn)要說(shuō)明理由;
(Ⅱ)對(duì)(I)中所選的函數(shù)f(x),若f(2)=11,f(3)=10,記g(x)=
f(x)-2x-13x+1
,經(jīng)過(guò)多年的統(tǒng)計(jì)發(fā)現(xiàn),當(dāng)函數(shù)g(x)取得最大值時(shí),拓展外銷市場(chǎng)的效果最為明顯,請(qǐng)預(yù)測(cè)明年拓展外銷市場(chǎng)的時(shí)間是幾月1號(hào)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆山西大學(xué)附中高三4月月考文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù),在定義域[-2,2]上表示的曲線過(guò)原點(diǎn),且在x=±1處的切線斜率均為.有以下命題:

是奇函數(shù);②若內(nèi)遞減,則的最大值為4;③的最大值為,最小值為,則; ④若對(duì), 恒成立,則的最大值為2.其中正確命題的序號(hào)為————

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省濰坊三縣高三階段性教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)理卷 題型:選擇題

已知函數(shù),在定義域[-2,2]上表示的曲線過(guò)原點(diǎn),且在x=±1處的切線斜率均為.有以下命題:

是奇函數(shù);②若內(nèi)遞減,則的最大值為4;③的最大值為,最小值為,則; ④若對(duì),恒成立,則的最大值為2.其中正確命題的個(gè)數(shù)為

A .1個(gè)            B. 2個(gè)            C .3個(gè)         D. 4個(gè)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案