已知雙曲線與橢圓共焦點,且以為漸近線,求雙曲線方程.
由橢圓. 
設雙曲線方程為,則 故所求雙曲線方程為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在橢圓上,求點到直線的最大距離和最小距離。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,以原點為圓點,橢圓的短半軸為半徑的圓與直線x-y+=0相切。
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設P(4,0),A,B是橢圓C上關于x軸對稱的任意兩個不同的點,連接PB交隨圓C于另一點E,證明直線AE與x軸相交于定點Q;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,一個焦點為
(Ⅰ)求橢圓的方程;
(Ⅱ)設直線交橢圓兩點,若點,都在以點為圓心的圓上,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知焦點在軸上橢圓的長軸的端點分別為,為橢圓的中心,為右焦點,且,離心率。
(Ⅰ)求橢圓的標準方程;
(Ⅱ)記橢圓的上頂點為,直線交橢圓于兩點,問:是否存在直線,使點恰好為的垂心?若存在,求出直線的方程,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖橢圓的右頂點是,上下兩個頂點分別為,四邊形是矩形(為原點),點分別為線段的中點.
(Ⅰ)證明:直線與直線的交點在橢圓上;
(Ⅱ)若過點的直線交橢圓于兩點,關于軸的對稱點(不共線),問:直線是否經(jīng)過軸上一定點,如果是,求這個定點的坐標,如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓與雙曲線有相同的焦點、,點的一個公共點,是一個以為底的等腰三角形,,的離心率為,則的離心率為  .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓兩個焦點的坐標分別為,并且經(jīng)過點.過左焦點,斜率為的直線與橢圓交于,兩點.設,延長,分別與橢圓交于兩點.
(I)求橢圓的標準方程;  (II)若點,求點的坐標;
(III)設直線的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

. (本小題滿分12分)
如圖,設拋物線C1:的準線與x軸交于F1,焦點為F2;以F1,F2為焦點,離心率的橢圓C2與拋物線C1在X軸上方的交點為P,延長PF2交拋物線于點Q,M是拋物線上一動點,且M在P與Q之間運動.
(I)當m =1時,求橢圓C2的方程;
(II)當的邊長恰好是三個連續(xù)的自然數(shù)時,求面積的最大值.

查看答案和解析>>

同步練習冊答案