如圖1-2(3)-14,它是曲柄連桿裝置示意圖,連桿AC=l,曲柄AB=r,曲柄AB和曲軸BC的角為α.

  (1)求連桿AC和曲軸BC間的夾角β的正弦.

  (2)當(dāng)α取什么值時(shí),β最大?

  (3)求滑塊C的位移x.

 

 

思路分析:由α、β、l、r構(gòu)成的△ABC中,求β的正弦可讓我們想到正弦定理,根據(jù)正弦函數(shù)的有界性,進(jìn)而由sinβ的最值利用正弦函數(shù)的單調(diào)性求出β的最值.

    解:(1)在△ABC中,由正弦定理,知sinβ=sinα.

    (2)由(1)知sinβ=  sinα,當(dāng)sinα=1時(shí),sinβ最大.

    ∵0≤β≤,∴當(dāng)sinβ最大時(shí),β最大,即sinα=1時(shí),α=,此時(shí)β最大.

    (3)在△ABC中,由余弦定理BC2=AB2+AC2-2AB\5AC\5cos∠BAC,

    ∴BC2=r2+l2-2rlcos(π-α-β)=r2+l2+2rlcos(α+β).

    ∴BC=.

    ∴位移x=r+l-BC=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)現(xiàn)有一個(gè)破損的圓塊(如圖1),只給出一把帶有刻度的直尺和一個(gè)量角器,請(qǐng)你設(shè)計(jì)一種方案,求出這個(gè)圓塊的直徑的長度.
(2)如圖2,已知△ABC三個(gè)角,A,B,C滿足sin2B+sin2C-sin2A=sinB•sinC,AD是△ABC外接圓直徑,CD=2,BD=3,求∠CAB和AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

班主任為了對(duì)本班學(xué)生的考試成績進(jìn)行分析,決定從全班25名女同學(xué),15名男同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析.若這8位同學(xué)的數(shù)學(xué)、物理分?jǐn)?shù)對(duì)應(yīng)如下表:
學(xué)生編號(hào) 1 2 3 4 5 6 7 8
數(shù)學(xué)分?jǐn)?shù)x 60 65 70 75 80 85 90 95
物理分?jǐn)?shù)y 72 77 80 84 88 90 93 95
根據(jù)如表數(shù)據(jù)用變量y與x的相關(guān)關(guān)系
(1)畫出樣本的散點(diǎn)圖,并說明物理成績y與數(shù)學(xué)成績x之間是正相關(guān)還是負(fù)相關(guān)?
(2)求y與x的線性回歸直線方程(系數(shù)精確到0.01),并指出某個(gè)學(xué)生數(shù)學(xué)83分,物理約為多少分?
參考公式:回歸直線的方程是:
?
y
=bx+a
,
其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,a=
.
y
-b
.
x
;其中
?
y
i
是與xi對(duì)應(yīng)的回歸估計(jì)值.
參考數(shù)據(jù):
.
x
=77.5,
.
y
=85,
8
i=1
(x1-
.
x
)2≈1050
8
i=1
(x1-
.
x
)(y1-
.
y
)≈688

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x),定義域?yàn)椋?span id="ja2ws8e" class="MathJye">-
3
2
,3),其圖象如圖所示,記y=f(x)的導(dǎo)函數(shù)為y=f′(x),則不等式f′(x)≤0的解集為
[-
1
3
,1]∪[2,3)
[-
1
3
,1]∪[2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1-2-10,已知△ABC中,D、E分別為AB、AC上的點(diǎn),DE∥BC,DE=1,BC=3,AB=6,則AD的長為 (    )

1-2-10

A.1             B.1.5                  C.2               D.2.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1-2-13所示,l1∥l2∥l3,若CH=4.5 cm,AG=3 cm,BG=5 cm,EF=12.9 cm,則DH=,EK=_________.

            

                         圖1-2-13                 

查看答案和解析>>

同步練習(xí)冊(cè)答案