(本小題滿分12分)
如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC⊥平面ABC ,AB=2,已知AE與平面ABC所成的角為θ,且tanθ=。
(Ⅰ)證明:平面ACD⊥平面ADE;
(Ⅱ)記AC=x,V(x)表示三棱錐A-CBE的體積,求V(x)的表達(dá)式;
(Ⅲ)當(dāng)V(x)取得最大值時,求二面角D-AB-C的大小。
(Ⅰ)證明:∵四邊形DCBE為平行四邊形 ∴CD∥BE,BC∥DE
∵ DC⊥平面ABC ,BCÌ平面ABC ∴DC⊥BC.
∵AB是圓O的直徑 ∴BC⊥AC且DC∩AC=C ∴BC⊥平面ADC.
∵DE//BC ∴DE⊥平面ADC
又∵DEÌ平面ADE ∴平面ACD⊥平面 ………………3分
(Ⅱ)∵ DC平面ABC ∴平面ABC
∴為AE與平面ABC所成的角,即=
在Rt△ABE中,由,得
在Rt△ABC中 ∵()
∴
∴()---7分
(Ⅲ)由(Ⅱ)知
要取得最大值,當(dāng)且僅當(dāng)取得最大值,
∵當(dāng)且僅當(dāng),即時,“=”成立,
∴當(dāng)取得最大值時,這時△ACB為等腰直角三角形--9分
連結(jié)CO,DO
∵AC=BC,DC=DC
∴≌ ∴AD=DB
又∵O為AB的中點 ∴
∴為二面角D-AB-C的平面角
在中 ∵,
∴, ∴=
即當(dāng)取得最大值時,二面角D-AB-C為60°.------12分
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com