根據(jù)下列條件,判斷三角形解的情況,其中正確的是( 。
A.a(chǎn)=8,b=16,A=30°有兩解
B.a(chǎn)=18,b=20,A=60°有一解
C.a(chǎn)=30,b=25,A=150°有一解
D.a(chǎn)=5,b=2,A=90°無解
若a=8,b=16,A=30°,由正弦定理可得
8
sin30°
=
16
sinB
,
解得sinB=1,∴B=
π
2
,故三角形有唯一解,故A不正確.
若a=18,b=20,A=60°,由正弦定理可得
18
sin60°
=
20
sinB
,解得sinB=
5
3
9

再由大邊對大角可得B>A,故B可以是銳角,也可以是鈍角,故三角形有2解,故B不正確.
若a=30,b=25,A=150°,由正弦定理可得
30
sin150°
=
25
sinB
,解得sinB=
5
12

再由B為銳角,可得三角形有唯一解,故C正確.
若 a=5,b=2,A=90°,則由正弦定理可得
5
sin90°
=
2
sinB
,求得sinB=
2
5

再由大邊對大角可得B為銳角,故三角形有唯一解,故D不正確,
故選 C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在△中,內(nèi)角的對邊分別為,已知
(1)求的值;(2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題14分)在銳角中,角所對的邊分別為,已知,(1)求的值;(2)若,,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

△ABC中,下列說法正確的是( 。
A.a(chǎn)sinA=bsinB
B.若A>B,則sinA>sinB
C.若A>B,則cosA>cosB
D.若sinB+sinC=sin2A,則b+c=a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC中,已知a=5
6
,A=60°,B=45°,則b=( 。
A.6B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,BC=a,AC=b,且a,b是方程x2-2
3
x+2=0
的兩根,又2cos(A+B)=1,
(1)求角C的度數(shù);
(2)求AB的長;
(3)△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若滿足,,恰有一解,則實(shí)數(shù)的取值范圍是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知ΔABC中,的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

中,,則等于__________.

查看答案和解析>>

同步練習(xí)冊答案