(本小題滿分15分)已知函數(shù)
(1)當(dāng)時(shí),求最小值;
(2)若存在單調(diào)遞減區(qū)間,求的取值范圍;
(3)求證:).

(1);(2);(3)詳見解析.

解析試題分析:(1)由求導(dǎo)判的函數(shù)上單調(diào)遞增,可求函數(shù)的最小值;(2)因存在單調(diào)遞減區(qū)間,所以有正數(shù)解,再分類討論對(duì)類一元二次函數(shù)存在正解進(jìn)行討論.(3)利用數(shù)學(xué)歸納法進(jìn)行證明即可.
試題解析:(1),定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ad/6/fibon.png" style="vertical-align:middle;" />.
,                       
上是增函數(shù).
.
(2)  因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3b/b/1rjf73.png" style="vertical-align:middle;" />
因?yàn)槿?img src="http://thumb.zyjl.cn/pic5/tikupic/7c/a/1npfg4.png" style="vertical-align:middle;" />存在單調(diào)遞減區(qū)間,所以有正數(shù)解.
的解 
①      當(dāng)時(shí),明顯成立 .
②當(dāng)時(shí),開口向下的拋物線,總有的解;
③當(dāng)時(shí),開口向上的拋物線,
即方程有正根.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d1/1/1woql3.png" style="vertical-align:middle;" />,
所以方程有兩正根.
當(dāng)時(shí),;                       ……… 4分
,解得.                             
綜合①②③知:.                                      ……… 9分
(3)(法一)根據(jù)(Ⅰ)的結(jié)論,當(dāng)時(shí),,即
,則有,   
,
.                                ……… 15分
(法二)當(dāng)時(shí),
,,即時(shí)命題成立.
設(shè)當(dāng)時(shí),命題成立,即
時(shí),
根據(jù)(Ⅰ)的結(jié)論,當(dāng)時(shí),,即
,則有,
則有,即時(shí)命題也成立.
因此,由數(shù)學(xué)歸納法可知不等式成立.                           ……… 15分
考點(diǎn):1.求導(dǎo)判單調(diào)性;2.方程與根的關(guān)系;3.數(shù)學(xué)歸納法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若,證明:時(shí),成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知其中是自然對(duì)數(shù)的底 .
(1)若處取得極值,求的值;
(2)求的單調(diào)區(qū)間;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),
(1)記的導(dǎo)函數(shù),若不等式上有解,求實(shí)數(shù)的取值范圍;
(2)若,對(duì)任意的,不等式恒成立.求,)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=+aln(x-1)(a∈R).
(Ⅰ)若f(x)在[2,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=2時(shí),求證:1-<2ln(x-1)<2x-4(x>2);
(Ⅲ)求證:+…+<lnn<1++ +(n∈N*,且n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)試問的值是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由;
(2)定義,其中,求
(3)在(2)的條件下,令.若不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,處的切線方程為
(Ⅰ)求的單調(diào)區(qū)間與極值;
(Ⅱ)求的解析式;
(III)當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中為正實(shí)數(shù),的一個(gè)極值點(diǎn).
(Ⅰ)求的值;
(Ⅱ)當(dāng)時(shí),求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè), 已知函數(shù) 
(Ⅰ) 證明在區(qū)間(-1,1)內(nèi)單調(diào)遞減, 在區(qū)間(1, + ∞)內(nèi)單調(diào)遞增;
(Ⅱ) 設(shè)曲線在點(diǎn)處的切線相互平行, 且 證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案