函數(shù)y=x•|cosx|的圖象大致是(  )
分析:易得函數(shù)為奇函數(shù),可排除CD,又當(dāng)x≥0時,f(x)≥0,可排除B,進(jìn)而可得答案.
解答:解:設(shè)函數(shù)y=f(x)=x|cosx|,
則f(-x)=-x|cosx|=-f(x),即函數(shù)為奇函數(shù),
故其圖象關(guān)于原點(diǎn)對稱,排除C,D,
又當(dāng)x≥0時,f(x)=x|cosx|≥0,
故在x軸下方無圖象,故排除B,
故選A
點(diǎn)評:本題考查函數(shù)的圖象,由函數(shù)奇偶性和當(dāng)x≥0時,f(x)≥0入手是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(x+
π
2
)
,g(x)=sin(x-
π
2
)
,給出下列命題:
①函數(shù)y=f(x)g(x)的最小正周期為2π;
②函數(shù)y=f(x)-g(x)的最大值是
2

③函數(shù)y=f(2x)的圖象可由y=g(2x)的圖象向左平移
π
4
個單位得到;
④函數(shù)y=f(2x)的圖象可由y=g(2x)的圖象向右平移
π
4
個單位得到.
其中正確命題的序號是
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

請先閱讀:
設(shè)平面向量
a
=(a1,a2),
b
=(b1,b2),且
a
b
的夾角為θ,
因?yàn)?span id="ztyhbsi" class="MathJye">
a
b
=|
a
||
b
|cosθ,
所以
a
b
≤|
a
||
b
|.
a1b1+a2b2
a
2
1
+
a
2
2
×
b
2
1
+
b
2
2
,
當(dāng)且僅當(dāng)θ=0時,等號成立.
(I)利用上述想法(或其他方法),結(jié)合空間向量,證明:對于任意a1,a2,a3,b1,b2,b3∈R,都有(a1b1+a2b2+a3b3)2≤(
a
2
1
+
a
2
2
+
a
2
3
)(
b
2
1
+
b
2
2
+
b
2
3
)
成立;
(II)試求函數(shù)y=
x
+
2x-2
+
8-3x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=1-λcos(x-
π3
)的最大值與最小值的差等于2,則實(shí)數(shù)λ的值為
1或-1
1或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①函數(shù)y=cos(x-
π
4
)cos(x+
π
4
)的圖象中,相鄰兩個對稱中心的距離為π;
②函數(shù)y=
x+3
x-1
的圖象關(guān)于點(diǎn)(-1,1)對稱;
③關(guān)于x的方程ax2-2ax-1=0有且僅有一個實(shí)數(shù)根,則實(shí)數(shù)a=-1;
④已知命題p:對任意的x∈R,都有sinx≤1,則非p:存在x∈R,使得sinx>1.
其中所有真命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(x-
π
4
)
.先把y=f(x)的圖象上所有點(diǎn)向左平移
π
4
個單位長度,再把所得圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的
1
2
(縱坐標(biāo)不變)得到函數(shù)y=g(x)的圖象.
(1)寫出函數(shù)g(x)的解析式;
(2)已知f(α)=
3
5
,α∈(
π
2
,
2
)
,求f(2α)的值;
(3)設(shè)g1(x),g2(x)是定義域?yàn)镽的兩個函數(shù),滿足g2(x)=g1(x+θ),其中θ是常數(shù),且θ∈[0,π].請?jiān)O(shè)計(jì)一個函數(shù)y=g1(x),給出一個相應(yīng)的θ值,使得g(x)=g1(x)•g2(x).并予以證明.

查看答案和解析>>

同步練習(xí)冊答案