【題目】已知雙曲線C: (a>0,b>0)的離心率為2,右頂點為(1,0).
(1)求雙曲線C的方程;
(2)設(shè)直線y=-x+m與y軸交于點P,與雙曲線C的左、右支分別交于點Q,R,且=2,求m的值.
【答案】(1)x2-=1;(2)m=1.
【解析】
(1)由離心率及右頂點可得a,c,進(jìn)而可得b,即可得雙曲線方程;
(2)設(shè)Q點橫坐標(biāo)為xQ,P點橫坐標(biāo)為xP,平行線分線段成比例定理==2,再由直線與雙曲線聯(lián)立,解得xP,Q=,列方程求解即可.
(1)因為e=2,a=1,c=2,b=,所以C:x2-=1.
(2)設(shè)Q點橫坐標(biāo)為xQ,P點橫坐標(biāo)為xP,
平行線分線段成比例定理==2.
聯(lián)立得2x2+2mx-3-m2=0,xP,Q=,
則===2.
m2=1,m=1或m=-1(舍),故m=1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】非零向量 , 的夾角為 ,且滿足| |=λ| |(λ>0),向量組 , , 由一個 和兩個 排列而成,向量組 , , 由兩個 和一個 排列而成,若 + + 所有可能值中的最小值為4 2 , 則λ= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,過點A(0,-b)和B(a,0)的直線與坐標(biāo)原點距離為.
(1)求橢圓的方程;
(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓相交于C、D兩點,試判斷是否存在k值,使以CD為直徑的圓過定點E?若存在求出這個k值,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直四棱柱ABCD﹣A1B1C1D1的底面ABCD是直角梯形,其中AB⊥AD,AB=2AD=2AA1=4,CD=1.
(Ⅰ)證明:BD1⊥平面A1C1D;
(Ⅱ)求BD1與平面A1BC1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)雙曲線C:-y2=1(a>0)與直線l:x+y=1相交于兩個不同的點A,B.
(1)求雙曲線C的離心率e的取值范圍;
(2)設(shè)直線l與y軸的交點為P,且,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品x件的總成本c(x)=120+,總成本的單位是元.
(1)當(dāng)x從200變到220時,總成本c關(guān)于產(chǎn)量x的平均變化率是多少?它代表什么實際意義?
(2)求c′(200),并解釋它代表什么實際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率e= ,右頂點、上頂點分別為A,B,直線AB被圓O:x2+y2=1截得的弦長為
(1)求橢圓C的方程;
(2)設(shè)過點B且斜率為k的動直線l與橢圓C的另一個交點為M, =λ( ),若點N在圓O上,求正實數(shù)λ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com