已知,函數(shù).

(1)當(dāng)時(shí),畫出函數(shù)的大致圖像;
(2)當(dāng)時(shí),根據(jù)圖像寫出函數(shù)的單調(diào)減區(qū)間,并用定義證明你的結(jié)論;
(3)試討論關(guān)于x的方程解的個(gè)數(shù).

(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)詳見(jiàn)解析.

解析試題分析:(1)當(dāng)a=2時(shí), ,作出圖象;
(2)由(1)寫出函數(shù)y=f(x)的單調(diào)遞增區(qū)間,再根據(jù)單調(diào)性定義證明即可;
(3)由題意知方程的解得個(gè)數(shù)等價(jià)于函數(shù)的圖像與直線的交點(diǎn)個(gè)數(shù).即函數(shù)的圖象與直線的交點(diǎn)個(gè)數(shù).
試題解析:(1)如圖所示
 3分
(2)單調(diào)遞減區(qū)間: 4分
證明:設(shè)任意的 
 
  5分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f0/2/11mf54.png" style="vertical-align:middle;" />,所以
于是,即6分
所以函數(shù)上是單調(diào)遞減函數(shù)               7分
(3) 由題意知方程的解得個(gè)數(shù)等價(jià)于函數(shù)的圖像與直線的交點(diǎn)個(gè)數(shù).即函數(shù)的圖象與直線的交點(diǎn)個(gè)數(shù)
,注意到
當(dāng)且僅當(dāng)時(shí),上式等號(hào)成立,借助圖像知                    8分
所以,當(dāng)時(shí),函數(shù)的圖像與直線有1個(gè)交點(diǎn); 9分
當(dāng),時(shí),函數(shù)的圖像與直線有2個(gè)交點(diǎn);  10分
當(dāng),時(shí),函數(shù)的圖像與直線有3個(gè)交點(diǎn);12分.
考點(diǎn):1.絕對(duì)值的函數(shù);2.函數(shù)的值域;3.函數(shù)的零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),,
(1)若,試判斷并證明函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),求函數(shù)的最大值的表達(dá)式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)為正實(shí)數(shù),函數(shù).
(1)若,求的取值范圍;(2)求的最小值;
(3)若,求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的圖象經(jīng)過(guò)點(diǎn)
(1)求函數(shù)的解析式;
(2)設(shè),用函數(shù)單調(diào)性的定義證明:函數(shù)在區(qū)間上單調(diào)遞減;
(3)解不等式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,函數(shù).
(I)證明:函數(shù)上單調(diào)遞增;
(Ⅱ)求函數(shù)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)求不等式的解集:
(2)求函數(shù)的定義域:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某廠生產(chǎn)某種產(chǎn)品(百臺(tái)),總成本為(萬(wàn)元),其中固定成本為2萬(wàn)元, 每生產(chǎn)1百臺(tái),成本增加1萬(wàn)元,銷售收入(萬(wàn)元),假定該產(chǎn)品產(chǎn)銷平衡。
(1)若要該廠不虧本,產(chǎn)量應(yīng)控制在什么范圍內(nèi)?
(2)該廠年產(chǎn)多少臺(tái)時(shí),可使利潤(rùn)最大?
(3)求該廠利潤(rùn)最大時(shí)產(chǎn)品的售價(jià)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)上是減函數(shù),且為奇函數(shù),滿足,試求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知f(x)是偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),若x∈時(shí),不等式f(1+xlog2a)≤f(x-2)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案