【題目】已知橢圓 的離心率 ,過點A(0,﹣b)和B(a,0)的直線與原點的距離為
(1)求橢圓的方程;
(2)已知定點E(﹣1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點,問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.

【答案】
(1)解:直線AB方程為bx﹣ay﹣ab=0,

依題意可得: ,

解得:a2=3,b=1,

∴橢圓的方程為


(2)解:假設(shè)存在這樣的值.

,

得(1+3k2)x2+12kx+9=0,

∴△=(12k)2﹣36(1+3k2)>0…①,

設(shè)C(x1,y1),D(x2,y2),

而y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4,

要使以CD為直徑的圓過點E(﹣1,0),

當(dāng)且僅當(dāng)CE⊥DE時,

則y1y2+(x1+1)(x2+1)=0,

∴(k2+1)x1x2+(2k+1)(x1+x2)+5=0…③

將②代入③整理得k= ,

經(jīng)驗證k= 使得①成立綜上可知,存在k= 使得以CD為直徑的圓過點E


【解析】(1)直線AB方程為bx﹣ay﹣ab=0,依題意可得: ,由此能求出橢圓的方程.(2)假設(shè)存在這樣的值. ,得(1+3k2)x2+12kx+9=0,再由根的判別式和根與系數(shù)的關(guān)系進(jìn)行求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐 中, , , 的中點, 是棱 上的點, , , .

(1)求證:平面 底面 ;
(2)設(shè) ,若二面角 的平面角的大小為 ,試確定 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

(1)求的值;

(2)判斷函數(shù)的單調(diào)性(只寫出結(jié)論即可);

(3)若對任意的不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到下表(單位:人):

經(jīng)常使用

偶爾或不用

合計

30歲及以下

70

30

100

30歲以上

60

40

100

合計

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?

(2)現(xiàn)從所有抽取的30歲以上的網(wǎng)民中利用分層抽樣抽取5人,

求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

從這5人中,在隨機(jī)選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

參考公式: ,其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了普及環(huán)保知識增強(qiáng)環(huán)保意識,某校從理工類專業(yè)甲班抽取60人,從文史類乙班抽取50人參加環(huán)保知識測試 附:k2= ,n=a+b+c+d

P(K2>k0

0.100

0.050

0.025

0.010

0.005

k0

2.706

3.841

5.024

6.635

7.879


(1)根據(jù)題目條件完成下面2×2列聯(lián)表,并據(jù)此判斷你是否有99%的把握認(rèn)為環(huán)保知識與專業(yè)有關(guān)

優(yōu)秀

非優(yōu)秀

總計

甲班

乙班

30

總計

60


(2)為參加上級舉辦的環(huán)保知識競賽,學(xué)校舉辦預(yù)選賽,預(yù)選賽答卷滿分100分,優(yōu)秀的同學(xué)得60分以上通過預(yù)選,非優(yōu)秀的同學(xué)得80分以上通過預(yù)選,若每位同學(xué)得60分以上的概率為 ,得80分以上的概率為 ,現(xiàn)已知甲班有3人參加預(yù)選賽,其中1人為優(yōu)秀學(xué)生,若隨機(jī)變量X表示甲班通過預(yù)選的人數(shù),求X的分布列及期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)的圖象恒過(0,0)(1,1)兩點,則稱函數(shù)“0-1函數(shù)”.

(1)判斷下面兩個函數(shù)是否是“0-1函數(shù),并簡要說明理由:

; .

(2)若函數(shù)“0-1函數(shù),求

(3)設(shè) ,定義在R上的函數(shù)滿足:① , R,均有; “0-1函數(shù),求函數(shù)的解析式及實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若恒成立,求實數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|x2﹣3x+2=0},B={x|x2+2a﹣1x+a2﹣5=0}

1)若A∩B={2},求實數(shù)a的值;

2)若A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)ax2bxc,且f(1)=-,3a2c2b,求證:

(1)a0,且-3<-;

(2)函數(shù)f(x)在區(qū)間(0,2)內(nèi)至少有一個零點;

(3)設(shè)x1,x2是函數(shù)f(x)的兩個零點,則≤|x1x2|.

查看答案和解析>>

同步練習(xí)冊答案