在邊長為1的菱形ABCD中,∠ABC=120°,E、F分別是BC、CD的中點,DE交AF于點H,則
AH
AB
=______.
設(shè)
AH
=t
AF
=t(
AD
+
1
2
AB
)
=t
AD
+
t
2
AB

又由D,H,E三點共線,則可設(shè):
AH
=μ
AD
+(1-μ)
AE

=μ
AD
+(1-μ)(
AB
+
1
2
AD
)

=(
1
2
+
μ
2
)
AD
+(1-μ)
AB

即:
t=
1
2
+
μ
2
t
2
=1-μ

解得:t=
4
5

AH
=
4
5
AD
+
2
5
AB

AH
AB
=(
4
5
AD
+
2
5
AB
)•
AB

=
4
5
AD
AB
+
2
5
AB2

=
4
5

故答案為:
4
5
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,P是△ABC內(nèi)一點,且滿足++=,設(shè)Q為CP延長線與AB的交點,求證:=.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若|
a
|=1,|
b
|=2,
c
=
a
+
b
,且
c
a
,則
c
b
的夾角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知平面向量
a
=(-1,2)
,
b
=(2,m)
,若
a
b
,則m=( 。
A.4B.-4C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知向量
QA
=(-1,2,5),
QB
=(4,7,m),若
QA
AB
,則m=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知{
i
j
,
k
}
是單位正交基底,
a
=-3
i
+4
j
-
k
,
a
-
b
=-8
i
+16
j
-3
k
,那么
a
b
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知向量
a
b
的夾角為120°,且|
a
|=|
b
|=4,那么
b
•(2
a
+
b
)=( 。
A.32B.16C.0D.-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,面PAD⊥面ABCD,PA=PD,四邊形ABCD是平行四邊形,E是BC中點,AE=3,則
CP
EA
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(文)已知向量
a
和向量
b
的夾角為30°,|
a
|=2,|
b
|=
3
,則
a
b
的數(shù)量積
a
b
=______.

查看答案和解析>>

同步練習(xí)冊答案