若正三棱錐的底面邊長為,側棱長為1,則此三棱錐的體積為        

試題分析:記正三棱錐為,點在底面內(nèi)的射影為點,則,在中,,所以.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖a,在直角梯形ABCD中,AB⊥AD,AD∥BC,F(xiàn)為AD的中點,E在BC上,且EF∥AB.已知AB=AD=CE=2,沿線EF把四邊形CDFE折起如圖b,使平面CDFE⊥平面ABEF.

(1)求證:AB⊥平面BCE;
(2)求三棱錐C ­ADE體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD為矩形,四邊形ADEF為梯形,AD//FE,∠AFE=60º,且平面ABCD⊥平面ADEF,AF=FE=AB==2,點G為AC的中點.

(Ⅰ)求證:EG//平面ABF;
(Ⅱ)求三棱錐B-AEG的體積;
(Ⅲ)試判斷平面BAE與平面DCE是否垂直?若垂直,請證明;若不垂直,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)在三棱柱中,側面為矩形,,的中點,交于點,側面.

(1)證明:
(2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖是一個直三棱柱被削去一部分后的幾何體的直觀圖與三視圖中的側視圖、俯視圖.在直觀圖中,的中點.又已知側視圖是直角梯形,俯視圖是等腰直角三角形,有關數(shù)據(jù)如圖所示.

(1)求證:EM∥平面ABC;
(2)試問在棱DC上是否存在點N,使NM⊥平面? 若存在,確定
點N的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

要做一個圓錐形的漏斗,其母線長為10,要使其體積最大,則高應為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在邊長為的正方體中,是棱上一點,是棱上一點,則三棱錐的體積是             .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一個幾何體的三視圖如圖所示,則這個幾何體的體積為(  )
A.B.9C.D.27

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知正方體的棱長為2,則它的內(nèi)切球的表面積是          

查看答案和解析>>

同步練習冊答案