已知函數(shù)f(x)=m+a1x+a2x2+a3x3+…+anxn+an+1xn+1,n∈N*。
(1)若f(x)=m+x2+x3
①求以曲線y= f(x)上的點(diǎn)P(1,f(1))為切點(diǎn)的切線的斜率;
②若函數(shù)f(x)在x=x1處取得極大值,在x=x2處取得極小值,且點(diǎn)(x1,f(x1))在第二象限,點(diǎn)(x2,f(x2))位于y軸負(fù)半軸上,求m的取值范圍。
(2)當(dāng)an=時(shí),設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),令Tn=,證明:Tn≤f'(1)-1。
解:(1)由
①曲線y=f(x)在點(diǎn)P(1,f(1))處的切線的斜率k=f'(1)=2;
②f'(x)=x+x2=x(x+1)
由f'(x)<0,得-1<x<0,
由f'(x)>0得x<-1或x>0
由題意,

解得
故m的取值范圍為。
(2)∵







要證Tn≤f'(1) -1,其中n∈N*
即證
當(dāng)n=1時(shí),T1=1,f'(1)-1=1,
此時(shí),Tn=f'(1)-1成立,
當(dāng)n=2時(shí),
不等式Tn<f'(1)-1成立
當(dāng)n≥3時(shí),




∴當(dāng)n≥3時(shí),

∴當(dāng)n≥3時(shí),不等式也成立,
綜上所述,對(duì)任意的n∈N*,不等式Tn≤f'(1)-1成立。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m•2x+t的圖象經(jīng)過(guò)點(diǎn)A(1,1)、B(2,3)及C(n,Sn),Sn為數(shù)列{an}的前n項(xiàng)和,n∈N*
(1)求Sn及an;
(2)若數(shù)列{cn}滿足cn=6nan-n,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m(x+
1
x
)的圖象與h(x)=(x+
1
x
)+2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在(0,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
,
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相鄰兩對(duì)稱軸間的距離不小于
π
2

(Ⅰ)求ω的取值范圍;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,a=
3
,b+c=3,當(dāng)ω最大時(shí),f(A)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下兩題任選一題:(若兩題都作,按第一題評(píng)分)
(一):在極坐標(biāo)系中,圓ρ=2cosθ的圓心到直線θ=
π
3
(ρ∈R)的距離
3
2
3
2
;
(二):已知函數(shù)f(x)=m-|x-2|,m∈R,當(dāng)不等式f(x+2)≥0的解集為[-2,2]時(shí),實(shí)數(shù)m的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集為[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,求Z=a+2b+3c的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案