精英家教網 > 高中數學 > 題目詳情

已知如圖①所示,矩形紙片AA′A1′A1,點B、C、B1、C1分別為AA′、A1A1′的三等分點,將矩形紙片沿BB1、CC1折成如圖②形狀(正三棱柱),若面對角線AB1⊥BC1,求證:A1C⊥AB1.

(圖①)

(圖②)

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖在四棱錐中,底面是菱形,,平面平面,的中點,是棱上一點,且.

(1)求證:平面;
(2)證明:∥平面;
(3)求二面角的度數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,幾何體EABCD是四棱錐,△ABD為正三角形,CB=CD,EC⊥BD.

(1)求證:BE=DE;
(2)若∠BCD=120°,M為線段AE的中點,求證:DM∥平面BEC.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在三棱錐SABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,過A作AF⊥SB,垂足為F,點E、G分別是棱SA、

SC的中點.求證:
(1)平面EFG∥平面ABC;
(2)BC⊥SA.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在多面體ABCDEF中,四邊形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,G、H分別為DC、BC的中點.

(1)求證:平面FGH∥平面BDE;
(2)求證:平面ACF⊥平面BDE.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,正方形ABCD和三角形ACE所在的平面互相垂直.EF∥BD,AB=EF.求證:

(1)BF∥平面ACE;
(2)BF⊥BD.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

由平面α外一點P引平面的三條相等的斜線段,斜足分別為A、B、C,O為△ABC的外心,求證:OP⊥α.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知四棱錐PABCD中,底面ABCD為正方形,PD⊥平面ABCD,ECPD,且PD=2EC.

(1)求證:BE∥平面PDA;
(2)若N為線段PB的中點,求證:NE⊥平面PDB.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,正方形ABCD和三角形ACE所在的平面互相垂直,EFBD,ABEF.

(1)求證:BF∥平面ACE
(2)求證:BFBD.

查看答案和解析>>

同步練習冊答案