(本題滿分13分) 已知函數(shù),函數(shù)
(I)當時,求函數(shù)的表達式;
(II)若,且函數(shù)在上的最小值是2 ,求的值;
(III)對于(II)中所求的a值,若函數(shù),恰有三個零點,求b的取值范圍。
(Ⅰ)函數(shù).(Ⅱ)。
解析試題分析: (1)先求解函數(shù)f(x)的導函數(shù),進而得到第一問的解析式。
(2)∵由⑴知當時,,
分析導數(shù)的正負號,進而判定極值,得到最值。
(3)
所以,方程,有兩個不等實根運用轉化思想來得到。
解: (Ⅰ)∵,
∴當時,; 當時,
∴當時,; 當時,.
∴當時,函數(shù). (4分)
(Ⅱ)∵由⑴知當時,,
∴當時, 當且僅當時取等號.由,得a="1" (8分)
令,得或x=b
(1)若b>1,則當0<x<1時,,當1<x<b,時,當x>b時,;
(2)若b<1,且b則當0<x<b時,,當b<x<1時,,當x>1時,
所以函數(shù)h(x)有三個零點的充要條件為或解得或
綜合: (13分)
另解:
所以,方程,有兩個不等實根,且不含零根
解得: (13分)
考點:本題主要考查了函數(shù)的最值和函數(shù)的零點的綜合運用
點評:解決該試題的關鍵是運用導數(shù)的思想來判定函數(shù)單調性,進而分析極值,得到最值,同時對于方程根的問題可以轉換為圖像的交點問題解決。
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)已知函數(shù)()的圖象為曲線.
(Ⅰ)求曲線上任意一點處的切線的斜率的取值范圍;
(Ⅱ)若曲線上存在兩點處的切線互相垂直,求其中一條切線與曲線的切點的橫坐標的取值范圍;
(Ⅲ)試問:是否存在一條直線與曲線C同時切于兩個不同點?如果存在,求出符合條件的所有直線方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知數(shù)列的前項和為,函數(shù),
(其中均為常數(shù),且),當時,函數(shù)取得極小值.
均在函數(shù)的圖像上(其中是的導函數(shù)).
(Ⅰ)求的值;
(Ⅱ)求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分) 已知為實數(shù),,
(Ⅰ)若a=2,求的單調遞增區(qū)間;
(Ⅱ)若,求在[-2,2] 上的最大值和最小值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com