已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿足關(guān)系式f(x)=x2+3xf′(2)+ex,則f'(2)的值等于( 。
A.-0B.
e2
2
-2
C.-
e2
2
D.-
e2
2
-2
∵f(x)=x2+3xf′(2)+ex
∴f'(x)=2x+3f'(2)+ex,
令x=2,
則f'(2)=4+3f'(2)+e2,
即-2f'(2)=4+e2,
∴f'(2)=-
e2
2
-2.
故選:D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)的定義域?yàn)閇—2,,部分對(duì)應(yīng)值如下表。的導(dǎo)函數(shù),函數(shù)的圖象如右圖所示:

 
  —2
   0
4
  
1
—1
1
 
若兩正數(shù)滿足,則的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知可導(dǎo)函數(shù)f(x)(x∈R)的導(dǎo)函數(shù)f′(x)滿足f′(x)>f(x),則不等式ef(x)>f(1)ex的解集是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),已知f(x)在R上的圖象(如圖),若f′(x)>0,則x的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列函數(shù)求導(dǎo)運(yùn)算正確的個(gè)數(shù)為( 。
①(3x)′=3xlog3e;
②(log2x)′=
1
xln2

③(ex)′=ex
④(
1
lnx
)′=x;
⑤(x•ex)′=ex+1.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)在區(qū)間上單調(diào)遞增,且方程的根都在區(qū)間上,則實(shí)數(shù)b的取值范圍為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

我們把形如y=f(x)φ(x)的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對(duì)數(shù)法:在函數(shù)解析式兩邊求對(duì)數(shù)得ln y=φ(x)lnf(x),兩邊求導(dǎo)得=φ′(x)·ln f(x)+φ(x)·,于是y′=f(x)φ(x)[φ′(x)·ln f(x)+φ(x)·].運(yùn)用此方法可以探求得y=x的單調(diào)遞增區(qū)間是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知f(x)=cosx+
π
2
,則f′(
π
2
)=(  )
A.-1B.-1+
π
2
C.1D.
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)y=
x
sinx的導(dǎo)數(shù)為(  )
A.y′=2
x
sinx+
x
cosx
B.y′=
sinx
x
-
x
cosx
C.y′=
sinx
x
+
x
cosx
D.y′=
sinx
2
x
+
x
cosx

查看答案和解析>>

同步練習(xí)冊(cè)答案