精英家教網 > 高中數學 > 題目詳情
已知直線l1:(a+2)x+(a+3)y-5=0和l2:6x+(2a-1)y-5=0平行,則a=
-
5
2
-
5
2
分析:直接利用兩條直線平行的充要條件求解即可.
解答:解:因為直線l1:(a+2)x+(a+3)y-5=0和l2:6x+(2a-1)y-5=0平行,
所以
a+2
6
=
a+3
2a-1
-5
-5
,解得a=-
5
2

故答案為:-
5
2
點評:本題考查直線的平行的充要條件的應用,考查計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

3、已知直線l1:(a+1)x+y-2=0與直線l2:ax+(2a+2)y+1=0互相垂直,則實數a的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l1過點A(3,0),直線l2過點B(0,4),l1∥l2,用d表示l1到l2的距離,則( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l1∥l2,A是l1,l2之間的一定點,并且A點到l1,l2的距離分別為3和4,B是直線l2上一動點,作AC⊥AB,且使AC與直線l1交于點C,則△ABC面積的最小值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線l1經過點A(-2,1),直線l2:x+2y-1=0,
(1)若直線l1∥l2,求直線l1的方程.
(2)若直線l1⊥l2,求直線l1的方程.

查看答案和解析>>

同步練習冊答案