(本題滿分15分)設(shè)數(shù)列的前項(xiàng)和為, 且. 設(shè)數(shù)列的前項(xiàng)和為,且. (1)求.
(2) 設(shè)函數(shù),對(duì)(1)中的數(shù)列,是否存在實(shí)數(shù),使得當(dāng)時(shí),對(duì)任意恒成立
(1)
(2)存在最大的實(shí)數(shù),使得當(dāng)時(shí),對(duì)任意恒成立.
本試題主要是考查了數(shù)列與不等式的綜合乙級(jí)數(shù)列中通項(xiàng)公式和求和問題。
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233250587684.png" style="vertical-align:middle;" />. 那么利用通項(xiàng)公式與前n項(xiàng)和的關(guān)系得到數(shù)列的通項(xiàng)公式,設(shè)數(shù)列的前項(xiàng)和為,且. 進(jìn)而求和得到結(jié)論。
(2)因?yàn)楹瘮?shù),對(duì)(1)中的數(shù)列,是否存在實(shí)數(shù),使得當(dāng)時(shí),對(duì)任意恒成立,只要分離為x與n的關(guān)系式,利用n的范圍得到x的取值情況。

所以存在最大的實(shí)數(shù),使得當(dāng)時(shí),對(duì)任意恒成立.(15分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
已知數(shù)列{}中,對(duì)一切,點(diǎn)在直線y=x上,
(Ⅰ)令,求證數(shù)列是等比數(shù)列,并求通項(xiàng)(4分);
(Ⅱ)求數(shù)列的通項(xiàng)公式(4分);
(Ⅲ)設(shè)的前n項(xiàng)和,是否存在常數(shù),使得數(shù)列 為等差數(shù)列?若存在,試求出 若不存在,則說明理由(5分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,,且
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)等差數(shù)列的各項(xiàng)均為正數(shù),其前項(xiàng)和為,且
成等比數(shù)列,求;
(III)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列中,,則     (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列項(xiàng)和為,210,130,則= ( )
A.12B.14C.16D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列中,,且點(diǎn)在直線上.數(shù)列中,,,
(Ⅰ) 求數(shù)列的通項(xiàng)公式(Ⅱ)求數(shù)列的通項(xiàng)公式; 
(Ⅲ)(理)若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列中,,且數(shù)列是等差數(shù)列,則(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列中,,則的值為(   )
A.5B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是等差數(shù)列的前n項(xiàng)和,已知,,則等于(   )
A.13B.35C.49D.63

查看答案和解析>>

同步練習(xí)冊(cè)答案