【題目】已知 =(2,1), =(1,7), =(5,1),設(shè)R是直線OP上的一點,其中O是坐標原點.
(1)求使 取得最小值時 的坐標的坐標;
(2)對于(1)中的點R,求 與 夾角的余弦值.
【答案】
(1)解:由題意,設(shè) =t =(2t,t),
則 = =(1﹣2t,7﹣t),
= =(5﹣2t,1﹣t).
所以 =(1﹣2t)(5﹣2t)+(7﹣t)(1﹣t)=5t2﹣20t+12=5(t﹣2)2﹣8,
所以當t=2時, 最小,即 =(4,2).
(2)解:設(shè)向量 與 的夾角為θ,由(1)得 =(﹣3,5), =(1,﹣1),
所以cosθ= = =﹣ .
【解析】(1)利用坐標法求出 的坐標,結(jié)合向量數(shù)量積的定義轉(zhuǎn)化為一元二次函數(shù),利用一元二次函數(shù)的性質(zhì)進行求解.(2)根據(jù)向量數(shù)量積的應(yīng)用進行求解即可.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,地面上有一豎直放置的圓形標志物,圓心為C,與地面的接觸點為G.與圓形標志物在同一平面內(nèi)的地面上點P處有一個觀測點,且PG=50m.在觀測點正前方10m處(即PD=10m)有一個高為10m(即ED=10m)的廣告牌遮住了視線,因此在觀測點所能看到的圓形標志的最大部分即為圖中從A到F的圓弧.
(1)若圓形標志物半徑為25m,以PG所在直線為x軸,G為坐標原點,建立直角坐標系,求圓C和直線PF的方程;
(2)若在點P處觀測該圓形標志的最大視角(即∠APF)的正切值為 ,求該圓形標志物的半徑.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前n項的和Sn,點(n,Sn)在函數(shù)=2x2+4x圖象上:
(1)證明是等差數(shù)列;
(2)若函數(shù),數(shù)列{bn}滿足bn=,記cn=anbn,求數(shù)列前n項和Tn;
(3)是否存在實數(shù)λ,使得當x≤λ時,f(x)=﹣x2+4x﹣≤0對任意n∈N*恒成立?若存在,求出最大的實數(shù)λ,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解小學生的體能情況,抽取了某小學同年級部分學生進行跳繩測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖所示),已知圖中從左到右前三個小組的頻率分別時0.1,0.3,0.4,第一小組的頻數(shù)為5.
(1)求第四小組的頻率?
(2)問參加這次測試的學生人數(shù)是多少?
(3)問在這次測試中,學生跳繩次數(shù)的中位數(shù)落在第幾小組內(nèi)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)= sin2x+2+2cos2x.
(1)求f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)在△ABC中,a,b,c分別是角A、B、C的對邊,若f(A)=4,b=1,△ABC的面積為 ,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程.
在平面直角坐標系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.
(1)寫出直線的普通方程和曲線的直角坐標方程;
(2)已知點.若點的極坐標為,直線經(jīng)過點且與曲線相交于兩點,設(shè)線段的中點為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農(nóng)場計劃種植某種新作物,為此對這種作物的兩個品種(分別稱為品種甲和品種乙)進行田間試驗.選取兩大塊地,每大塊地分成小塊地,在總共小塊地中,隨機選小塊地種植品種甲,另外小塊地種植品種乙.
(1)假設(shè),求第一大塊地都種植品種甲的概率;
(2)試驗時每大塊地分成小塊,即,試驗結(jié)束后得到品種甲和品種乙在各小塊地上的每公頃產(chǎn)量(單位:kg/hm2)如下表:
甲 | ||||||||
乙 |
分別求品種甲和品種乙的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗結(jié)果,你認為應(yīng)該種植哪一品種?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com