精英家教網 > 高中數學 > 題目詳情

則函數的最大值,最小值分別為 (     )               

   A.10,6      B.10,8      C.8,6       D.8,8

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

函數y=logax,x∈[2,4],a>0且a≠1,若此函數的最大值比最小值大1,則a=________.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=logax,x∈[2,4],a>0且a≠1,若此函數的最大值比最小值大1,則a=________.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年北京市高三上學期第二次月考理科數學試卷(解析版) 題型:選擇題

,則函數的最大值和最小值為   (      )

A、最大值為2,最小值為;     B、最大值為2,最小值為0;

C、最大值為2,最小值不存在;   D、最大值7,最小值為-5;

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山東省菏澤市高三5月高考沖刺題理科數學試卷(解析版) 題型:解答題

已知函數的圖象過坐標原點O,且在點處的切線的斜率是.

(Ⅰ)求實數的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實數,曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當時,,則。

依題意得:,即    解得

第二問當時,,令,結合導數和函數之間的關系得到單調性的判定,得到極值和最值

第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

(Ⅰ)當時,,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當時,,令

變化時,的變化情況如下表:

0

0

+

0

單調遞減

極小值

單調遞增

極大值

單調遞減

,,。∴上的最大值為2.

②當時, .當時, ,最大值為0;

時, 上單調遞增!最大值為。

綜上,當時,即時,在區(qū)間上的最大值為2;

時,即時,在區(qū)間上的最大值為。

(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

不妨設,則,顯然

是以O為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

若方程(*)無解,不存在滿足題設要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時

代入(*)式得:    即   (**)

 ,則

上單調遞增,  ∵     ∴,∴的取值范圍是。

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數,曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>

同步練習冊答案