設(shè)拋物線y2=8x的準線與x軸交于點Q,若過Q點的直線l與拋物線有公共點,求直線l的斜率的取值范圍.
分析:先求出Q點坐標,根據(jù)Q點坐標,設(shè)出直線l的方程,與拋物線方程聯(lián)立,若直線l與拋物線有公共點,則方程中△≥0,解關(guān)于k的不等式即可.
解答:解:由已知拋物線的準線為:x=-2∴Q(-2,0)
顯然直線l斜率存在
∴設(shè)l:y=k(x+2)
聯(lián)立拋物線方程有:
y=k(x+2)
y2=8x
化簡得:k2x2+(4k2-8)x+4k2=0
當k2=0即k=0時:此時方程為:-8x=0交點為(0,0)
∴l(xiāng):y=0符合
當k2≠0時:△=(4k2-8)2-4k2•4k2≥0
∴-1≤k≤1
∴-1≤k<0或0<k≤1綜上可知:-1≤k≤1
點評:本題以拋物線為載體,考查直線與拋物線的位置關(guān)系,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)拋物線y2=8x的準線與x軸交于點Q,若過點Q的直線l與拋物線有公共點,則直線l的斜率的取值范圍是( 。
A、[-
1
2
1
2
]
B、[-2,2]
C、[-1,1]
D、[-4,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

13、設(shè)拋物線y2=8x的準線與x軸交于點Q,則點Q的坐標是
(-2,0)
;若過點Q的直線l與拋物線有公共點,則直線l的斜率的取值范圍是
[-1,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)拋物線y2=8x的焦點為F,過F,的直線交拋物線于A(x1,y1),B(x2,y2),則y1y2=(  )
A、8B、16C、-8D、-16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)拋物線y2=8x的焦點為F,過點F作直線交拋物線于A、B兩點,若線段AB的中點E到y(tǒng)軸的距離為3,則AB的長為
10
10

查看答案和解析>>

同步練習冊答案