(本小題滿分12分)
已知,其中是自然對數(shù)的底數(shù),
(1)討論時(shí),的單調(diào)性。
(2)求證:在(1)條件下,
(3)是否存在實(shí)數(shù),使得最小值是3,如果存在,求出的值;如果不存在,說明理由。

(1) 增區(qū)間,減區(qū)間(2)證明:,(3)存在

解析試題分析:(1),令增區(qū)間,減區(qū)間
(2)由(1)可知,,定義域
,令,所以的最大值為成立
(3),當(dāng)時(shí)恒成立,無最小值;當(dāng)時(shí),令,令

考點(diǎn):判定函數(shù)單調(diào)性求其最值
點(diǎn)評:本題借助函數(shù)的導(dǎo)數(shù)求出單調(diào)區(qū)間進(jìn)而計(jì)算其最值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù)
(Ⅰ)若,求的單調(diào)區(qū)間;
(Ⅱ)若當(dāng)≥0時(shí)≥0,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1) 若的極值點(diǎn),求在[1,]上的最大值;
(2) 若在區(qū)間[1,+)上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)已知在x=2時(shí)有極大值6,在x=1時(shí)有極小值.
⑴ 求的值;
⑵ 求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)  如圖,由y=0,x=8,y=x2圍成的曲邊三角形,在曲線弧OB上求一點(diǎn)M,使得過M所作的y=x2的切線PQ與OA,AB圍成的三角形PQA面積最大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖像過點(diǎn)的切線方程;
(3)對一切的,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),若在區(qū)間上的最小值為-2,求的取值范圍;
(3)若對任意,且恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知函數(shù)
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對于任意恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知函數(shù)f(x)=x3+ax2+(a+6)x+b(a,b∈R).
(1)若函數(shù)f(x)的圖象過原點(diǎn),且在原點(diǎn)處的切線斜率是3,求a,b的值;
(2)若f(x)為R上的單調(diào)遞增函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案