已知向量
p
=(-cos 2x,a),
q
=(a,2-
3
sin 2x),函數(shù)f(x)=
p
q
-5(a∈R,a≠0).
(1)求函數(shù)f(x)(x∈R)的值域;
(2)當a=2時,若對任意的t∈R,函數(shù)y=f(x),x∈(t,t+b]的圖象與直線y=-1有且僅有兩個不同的交點,試確定b的值(不必證明),并求函數(shù)y=f(x)的在[0,b]上單調(diào)遞增區(qū)間.
分析:(1)利用向量的數(shù)量積公式,結(jié)合輔助角公式化簡函數(shù),利用-1≤sin(2x+
π
6
)≤1
,對a討論,即可求得函數(shù)f(x)(x∈R)的值域;
(2)由題設函數(shù)y=f(x),x∈(t,t+b]的圖象與直線y=-1有且僅有兩個不同的交點及函數(shù)y=f(x)的最小正周期為π可知,b的值為π,利用正弦函數(shù)的單調(diào)性,可求函數(shù)y=f(x)在[0,π]上的單調(diào)遞增區(qū)間.
解答:解:(1)f(x)=
p
q
-5=-acos2x-
3
asin2x+2a-5
=-2asin(2x+
π
6
)+2a-5
.…(2分)
因為x∈R,所以-1≤sin(2x+
π
6
)≤1

當a>0時,-2a×1+2a-5≤f(x)≤-2a×(-1)+2a-5.
所以f(x)的值域為[-5,4a-5].…(4分)
同理,當a<0時,f(x)的值域為[4a-5,-5].…(6分)
(2)當a=2時,y=f(x)=-4sin(2x+
π
6
)-1
,由題設函數(shù)y=f(x),x∈(t,t+b]的圖象與直線y=-1有且僅有兩個不同的交點及函數(shù)y=f(x)的最小正周期為π可知,b的值為π.…(8分)
π
2
+2kπ≤2x+
π
6
2
+2kπ,k∈Z
,得
π
6
+kπ≤x≤
3
+kπ,k∈Z
.…(10分)
因為x∈[0,π],所以k=0,
∴函數(shù)y=f(x)在[0,π]上的單調(diào)遞增區(qū)間為[
π
6
,
3
]
.…(12分)
點評:本題考查向量知識的運用,考查三角函數(shù)的化簡,考查三角函數(shù)的性質(zhì),屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1
,
①求矩陣A;
②已知矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
 t
(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標方程;
②設點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
(3)已知函數(shù)f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關于x的不等式f(x)≥a2-a在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知向量
m
=(2a-c,b)與向量
n
=(cosB,-cosC)互相垂直.
(1)求角B的大;
(2)求函數(shù)y=2sin2C+cos(B-2C)的值域;
(3)若AB邊上的中線CO=2,動點P滿足
AP
=sin2θ•
AO
+cos2θ•
AC
(θ∈R)
,求(
PA
+
PB
)•
PC
的最小值.

查看答案和解析>>

同步練習冊答案